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FOREWORD

The papers presented here have been derived primarily from

speaker's summaries of talks presented at the Flight Mechanics /

Estimation Theory Symposium held May 21-23, 1991 at the Goddard

Space Flight Center. For completeness, _bstracts are included of

those talks for which summaries were unavailable at press time.

Papers included in this document are presented as received from

the authors with little or no editing.
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Cosmic Background Explorer (COBE) Navigation With
TDRSS One-Way Return-Link Doppler in the

Post-Helium-Venting Phase*

M. Nemesure and J. Dunham

COMPUTER SCIENCES CORPORATION (CSC)

M. Maher

BENDIX FIELD ENGINEERING CORPORATION (BFEC)

J. Teles and J. Jackson

GODDARD SPACE FLIGHT CENTER (GSFC)

ABSTRACT

A navigation experiment has been performed which establishes USO-

frequency-stabilized one-way return-link Doppler TDRSS tracking data as a

feasible option for mission orbit determination support at the Goddard Space

Flight Center Flight Dynamics Facility (GSFC FDF). The study was conducted

using both one-way and two-way Tracking and Data Relay Satellite System

(TDRSS) tracking measurements for the Cosmic Background Explorer

(COBE) spacecraft. Tracking data for a 4-week period immediately following

the depletion of the helium supply was used. The study shows that, for both

definitive orbit solution and short-term orbit prediction (up to 4 weeks), orbit

determination results based on one-way return-link Doppler tracking meas-

urements are comparable to orbit determination results based on two-way

range and two-way Doppler tracking measurements.

* This work;was supported by the National Aeronautics and Space Aclministration (NASA)/Godclarcl Space
Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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INTRODUCTION

This paper discusses orbit determination analysis results that establish Ultra-Stable Oscilla-

tor (USO)-frequency-stabilized one-way return-link Doppler Tracking and Data Relay Satel-

lite (TDRS) System (TDRSS) tracking data as a feasible option for mission orbit

determination support at the Goddard Space Flight Center Flight Dynamics Facility (GSFC

FDF). The study was conducted using TDRSS tracking measurements for the Cosmic Back-

ground Explorer (COBE) spacecraft.

COBE is the first, and so far the only, spacecraft supported by the FDF to be tracked with

USO-stabilized one-way return-link noncoherent Doppler tracking measurements. COBE

orbit determination analysis has therefore served as a flight-test of the one-way tracking sys-

tem. Future use of TDRSS one-way Doppler tracking measurements will be required by the

Ocean Topography Experiment (TOPEX) and the Explorer Platform/Extreme Ultraviolet

Explorer (EP/EUVE) TDRSS Onboard Navigation (TONS) experiment. Both of these fu-

ture experimentg will utilize USOs similar to the USO carried by COBE for Doppler frequen-

cy reference. TOPEX requires very high precision orbit determination using one-way

return-link Doppler tracking. For example, velocity changes brought about by in-plane

TOPEX spacecraft maneuvers must be determined to within 0.1 millimeter per second (Ref-

erence 1). The EP/EUVE TONS experiment will use one-way forward-link Doppler tracking

data for a ground-based emulation ofonboard navigation. The EP/EUVE TONS experiment

will benefit from the USO performance evaluation techniques discussed in this paper (see

Reference 2 for a discussion of the EP/EUVE TONS experiment). Reference 3 provides

background information about the COBE spacecraft and describes the USO and its role in

one-way orbit determination.

Previous COBE navigation analysis (Reference 3) utilized tracking measurements obtained

during the period COBE was venting helium from a Dewar used to cool one of its science

e_eriments. This period began soon after COBE launch on November 18, 1989, and lasted

until September 1990. This venting phase work accomplished three objectives: (1) verifica-

tion of algorithms for one-way navigation with real data, (2) determination of the flight per-

formance of the USO coupled to the second-generation TDRSS transponder, and

(3) qualification ofTDRSS noncoherent one-way return-link Doppler tracking data for FDF

mission support of COBE. Since this work involved analysis of an orbit that was being per-

turbed by helium venting, the third objective stated above only addressed whether the

one-way data can support COBE mission requirements. Overlap ephemeris comparisons on

the order of hundreds of meters and 4-week orbit prediction errors on the order of hundreds

of kilometers characterized both one-way and two-way orbit determination capabilities dur-

ing the venting phase. Thus, accuracy assessment was severely limited.

This paper covers the second phase of the COBE navigation experiment, which was initiated

on September 27, 1990, after the helium was depleted. One-way tracking measurements for

October and the last 4 days of September 1990 were used for orbit determination with a re-

search version of the Goddard Trajectory Determination System (GTDS). The objective of

this phase of analysis was to reassess the suitability of one-way tracking measurements for

orbit determination during a more quiescent period of the COBE mission, when greater orbit

determination accuracy is possible. Orbit solutions were generated using the best force

6130-1 4



models and processing options available within the GTDS environment. Such an effort was

warranted only when the unmodeled venting perturbations were no longer a factor. Although

additional one-way solution accuracy was achieved during the postventing phase analysis,

these one-way solutions do not represent the best possible with one-way tracking systems.

The primary accuracy-limiting factor during the postventing phase is the poor COBE tracking

geometry, which results from limitations of the COBE TDRSS antenna pattern coverage.

More discussion of the COBE tracking geometry follows in the analysis section of this paper.

This paper discusses the consistency, compatibility, and predictive capability of one-way solu-

tions relative to two-way solutions. Additionally, the performance of the USO in the in-flight
environment is addressed.

REVIEW OF COBE CHARACTERISTICS RELEVANT TO
ORBIT DETERMINATION

The COBE spacecraft was placed in a nearly circular Sun-synchronous orbit with an altitude

of 900 kilometers and an inclination of 99 degrees. The spacecraft has no orbit maneuver

capability. The primary influences on the orbit evolution are the gravitational, atmospheric

drag, and (prior to September 27, 1990) helium venting forces.

The USO onboard COBE provides a command-selectable external stable reference fre-

quency to either of the two onboard TDRSS user transponders. It has a reference frequency

of 19.056393 megahertz and a prelaunch measured long-term drift of-4 x 10 -11 parts per day

(Reference 4). The drift of the USO, when coupled to the COBE second-generation TDRSS

transponder, has been determined from previous flight analysis to be better than 5 x 10 -n

parts per day in magnitude. The USO is used as the source frequency for one-way noncoher-

ent Doppler data extracted from the TDRSS return-link signal at the White Sands Ground

Terminal (WSGT), as depicted in Figure 1. The TDRSS tracking data for these evaluations

were derived from both the S-band Single-Access (SSA) and Multiple-Access (MA) TDRSS
services.

Details of the one-way return-link Doppler measurement model can be found in Reference 3.

ANALYSIS PROCEDURE

The orbit determination performed for this analysis was based on the least-squares batch esti-

mation algorithm available in GTDS. (Reference 5 gives a detailed discussion of this algo-

rithm.) In addition to COBE orbit determination using TDRSS tracking measurements, the

analysis also involved TDRS-East and TDRS-West orbit determination using Bilateration

Ranging Transponder System (BRTS) tracking measurements. Although simultaneous solu-

tion of relay and user satellite orbits is possible, the TDRS orbits were predetermined for this

study.

This study utilized the the force models summarized in Table 1 and the processing options

summarized in Table 2 for user and relay orbit determination. In particular, the Goddard

Earth Model (GEM)-T2 geopotential model (Reference 6) provided coefficients through

6130-1
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Table 1, Summary of Modeling Options

SPACECRAFT

OPTION
COBE TDRS-EAST AND TDRS-WEST

GEOPOTENT]AL

THIRD-BODY EFFECTS

SOLAR RAD_AT_3N

PRESSURE

POLA.R MOTION

ATMOSPHERIC DRAG

EARTH TIDES

SATELLITE AREA

SATELUTE MASS

GEM-T2 50 x 50. EQUATIONS OF MOTION

GEM-T2 4 x 0 (TRUNCATED), VARIATIONAL EQUATIONS

SUN, MOON (POINT-MASS)

APPlJED WITH C._ = 1.42

YES

JACCHIA-ROBERTS MODEL; Co = 2,3; HISTORICAL F10.7

SOLAR FLUX, GEOMAGNETIC, AND TEMPERATURE DATA; Co
VARIATION ESTIMATED

GEOPOTENTIAL OOMPEI_SATED; LOVE NUMBER = 0.29;

LAG ANGLE ,= 2.5 DEGI:}EES

SPHERE WITH DIAMETER = 4.7@ METERS

2055 k3LOGRAMS

GEM-T2 8 x 8 (TRUNCATED). EQUATIONS OF MOTION

GEM-T2 4 x 0 ('TRUNCATED). VARIATIONAL EQUATIONS

SUN, MOON (POINT-MASS)

COEFFtCIE._NT ESTIMATED

YES

NEITHER APPLIED NOR ESTIMATED

GEQPOTEN'nALCOMPENSATED; LOVE NUMBER =, 029;

LAG ANGLE = 2.5 DEGREES

SPHERE WiTH DIAMETER = 632 METERS

TDRS-EasE

TDRS-Wt,_I:

fg84,87 KILOGRAMS (@127/90-'tO/4/gO)
lg84,77 KILOGRAMS (10/5/90-10/31/90)

1991,85 KILOGRAMS

Table 2. Summary of Processing Options

OPT]ON

NUMERICAL

INTEGRATION

REFERENCE FRAME

MEASUREMENT DATA

AND DATA RATE

EDmNGCRITERIA

STANDARD DEVIAT]ONS

USED FOR EDITING AND

WEIGHTING

IONOSPHERIC

REFRACTION

TROPOSPHERIC

REFRACT]ON

ESTIMATOR

ESTIMATED

PARAMETERS

SPACECRAFT

. TDRS-EAST AND TDRS-WESTCOBE
r r

12th-ORDER FIXED-STEP COWELL
CoO-SECOND STEPSIZE

MEAN EQUATOR ANC EQUINOX OF J2OO0.O FOR INTEGRA-

TION AND SOLAR/LUNAR/PLANETARY (SIP) EPHEMERIS

ONE-WAY DOPPLER: 10 SECONDS

]3NO-WAY DOPPLER: 10 SECONDS

RANGE: 10 SECONDS

ATMOSPHERIC EDITING; HORP*_CENTRAL ANGLE =

830 I<JLOMETERS/70 DEGREES (SEETEX_
RESIDUAL EDmNG: 3 o

ONE-WAY DOPPLER: 0.13 HERTZ

"PNO-WAY DOPPLER: 025 HERTZ
RANGE:30METERS " , • .... :_ .....

NO CORRECTION

GROUND-TO-RELAY LEG CORRECTED

BATCH WEIGHTED LEAST SQUARES

POSITION, VELOCITy, ATMOSPHERIC VARIATION COEF-

FICIENT { ,oI 't: USO FREQUENCY B_AS AND DRIFT

121h-ORDER FIXED-STEP COWELL
6DO-SECOND STEPSIZE

MEAN EQUATOR AND EQUINOX OF J20_O0 FOR INTE-
GRA'170N AND SIP EPHEMERIS

BRTS DOPPLER: 10 SECONDS

BRTS RANGE; 10 SECONDS

30 RESIDUAL EDITING

BRTS DOPPLER: 0 003 HERTZ

SRTS RANGE: 10 METERS

GROUND-TO-RELAY LEG CORRECTED

GROUND-TO-RELAY LEG CORRECTED

BATCH WEIGHTED LEAST SQUARES

POSITION, VELOCITY AND SOLAR REFLECTIVtTY

COEFFICIENT (C,_)

• HORP = HEIGHT OF RAY PATH
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degree and order 50. The complete coefficient set was incorporated in the COBE solutions;

the coefficient set was truncated at degree and order 8 for the relay satellites. Additionally,

historical solar flux, geomagnetic, and exospheric temperature data were used with the

Jacchia-Roberts atmospheric density model. The cross-sectional areas of the COBE and

Tracking and Data Relay Satellite (TDRS) spacecraft were assumed constant. The error asso-

ciated with this assumption was compensated by estimating the atmospheric drag variation

coefficient (01) for COBE and estimating the solar reflectivity coefficient (CR) for the

TDRSs. The effects due to polar motion, Earth tides, and atmospheric refraction of the track-

ing signal were taken into account. These corrections are discussed in References 7 and 8.

Prior to the orbit determination analysis, error analysis was performed using the Orbit Deter-

mination Error Analysis Program (ODEAS) in an attempt to find the optimum data arc length

for COBE that would enable estimation of the atmospheric drag variation parameter (.ol).

High correlations among the state variables were observed in the noise-only covariance ma-

trix for a 34-hour COBE solution arc when .01 was included in the state. The error analysis

showed that 4 days of glata would allow 01 estimation and acceptable levels of geopotential

error (at COBE's altitude of 900 kilometers, drag effects are too small to permit short-arc .01

estimation). The error analysis also showed that the benefits of a long TDRS data arc are

diminished by accumulation of gravitational and solar radiation pressure errors. Based on

the error analysis, a 4-day, 10-hour arc was selected for COBE and a 40-hour arc was selected
for the TDRSs.

Two sets of four separate 40-hour TDRS solutions (one set for TDRS-East and one set for

TDRS-West) were utilized for each 4-day, 10-hour COBE solution. The 40-hour arcs were

scheduled so that they would overlap by 10 hoursJ The TDRS solutions involved the estima-

tion of the coefficient of reflectivity, CR, and were based on BRTS range and Doppler meas-
urements.

Three separate COBE solutions for each of eight 4-day, 10-hour arcs were evaluated: a

one-way only solution, a two-way only solution, and a combined one-way and two-way solu-

tion. The COBE solutions involved estimation of the drag variation parameter (.ol) and,

when one-way data were included, the effective USO frequency bias and drift. The bias esti-

mation, in addition to compensating for the USO bias, accounted for relativistic shifts in the

frequency during transmission of the tracking signal. The COBE data arcs matched the

schedule followed by FDF Orbit Operations personnel for mission support of COBE. Ac-

cordingly, each 4-day, 10-hour data arc started at 0 hours on either a Monday or a Thursday.
Thus, alternating overlaps periods of 10 hours and 34 hours occurred.

In an attempt to mitigate the effects of ionospheric disturbance on the tracking measurements

(see the analysis results section), atmospheric editing was performed. This editing used a geo-

metric criterion based on the height of ray path (HORP) and the central angle. HORP is

defined as the height above the surface of the Earth of the point on an imaginary line connect-

ing the relay and TDRS spacecraft that is closest to the Earth's surface. The central angle is

1 A slight adjustment had to be made to the data arc scheduling so that a TDRS-East maneuver, which oc-

curred on October 4, 1990, could be accommodated.

6130-1 8



measured between the user spacecraft and relay spacecraft position vectors with respect to

the center of the Earth. Figure 2 illustrates the HORP (h) and central angle (d) geometry.

For this study, a tracking measurement was not used if its associated central angle was greater

than 70 degrees at the same time its associated HORP was less than 830 kilometers.

Since simultaneous one-way and two-way tracking was not available, the one-way and

two-way tracking measurement distributions were not identical. However, similar tracking

schedules and similar quantities of one-way measurements and two-way measurement pairs

allowed valid comparisons of one-way and two-way solutions. Figure 3 shows typical one-way

and two-way tracking measurement distributions as they were accepted for orbit determina-

tion. The figure covers a 4-day period used for one of the solution arcs.

Three types of ephemeris comparisons were used to evaluate solution consistency and solu-

tion compatibility: overlap comparisons, parallel comparisons, and predictive comparisons.

Overlap and predictive comparisons both involve comparison of solutions based on the same

data type. Parallel comparisons involve a comparison of solutions based on different data

types. Each comparison scheme is illustrated in Figure 4. In addition to ephemeris compari-

son results, the byproducts of the estimation process (such as editing statistics), the RMS of

the observation residuals, and the atmospheric drag variation parameter provided a basis for

comparison between one-way and two-way solutions. Additionally, the performance of the

USO in the in-flight environment was ascertained from an evaluation of the tracking data.

The effects of the USO bias and drift on the one-way data and on the solution accuracy were

analyzed.

TRACKING DATA EVALUATION RESULTS

The noise and bias characteristics of the USO were computed based on the statistical proper-

ties of the one-way measurement residuals. A measurement residual is the algebraic differ-

ence between the observed value of a tracking measurement and the computed value of the

measurement. The residuals, which are computed during the estimation process, effectively

remove orbital variations from the tracking data. Thus, such qualities as random noise varia-

tion, S-band frequency bias, and S-band frequency drift are more easily discerned from the

residuals than from the tracking measurements. The frequency bias and drift were considered

reflections of USO performance. The residuals used for the data evaluation were obtained

from 24-hour GTDS solutions generated over the course of the period starting with COBE's

launch and ending at the end of November 1990 (tracking data evaluation was unaffected by

venting effects). Each 24-hour solution provided a mean residual for each batch of data oc-

curring within it's solution arc.

The first parameter evaluated was the USO frequency bias. A least-squares quadratic curve

was fit to all the Doppler residual mean values that had accumulated during the period under

study (from September 27, 1990, through October 1990). The equation for this fit was as
follows:

b(T) = -226.178 -0.1583T + 0.000127T 2 + 0.i086

where T is the number of days from December 31, 1989, and b(T) is in hertz.

6_3o-1 9
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Figure 4. Illustration of Ephemeris Comparison Schemes

Figure 5 shows the fitted parabola along with the mean residual data. The figure also displays

the estimated values of the USO frequency bias obtained from the 4-day solutions generated

for this study. The curve can be interpreted as the offset from the nominal S-band return-link

frequency of 2287.5 megahertz. Spikes in the curve are likely attributable to exceptionally

high levels of ionospheric disturbance. It was confirmed that most of the tracking data which

produced these spikes were rejected from the orbit determination process either with atmo-

spheric editing or 3o" editing.

The second parameter evaluated was the frequency drift. A least-squares linear curve was fit

to the mean residuals over sliding 24-hour intervals. Table 3 lists the drift values obtained

from these 24-hour curve fits, from differentiation of the frequency offset equation above,

and from the 4-day orbit solutions. The drift is expressed as fractional Parts of 2287.5 mega-

hertz per day. Table 3 shows good agreement between the 4-week evaluated drift values and

the estimated drift values. The 24-hour evaluated drift values displayed wider fluctuation. All
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Table 3. Estimated and Evaluated S-Band Frequency Bias and Drift

A. BIAS

ESTIMATED BIAS (HERI"_ EVALUATED BIAS (HERTZ)

SOLUTION

EPOCH FROM ONE-WAY FROM COMBINED FROM 4-WEEK

(0 HOURS) SOLUTION ONE- AND TWO-WAY QUADRATIC FFF
SOLUTIONS

10/01/9O

10/04/90

10/08/90

10/11/90

10/15/90

10/18/90

10122/9O

10/25/90

-260.0260

-260.2743

-260, 644O

-2_0 9246

-261 2572

-261.4202

-2fll .7965

-262.0560

-260.0374

-2603117

-2808468

-L:_09133

-261 2529

-261 4084

-2618137

-262.0480

-260.0252

-2602902

-260 6400

-260.8997

-261 2424

-261,4967

-261.8323

-262,0813

B. DRIFT

ESTIMATED DRIFT (PARTS/DAY) EVALUATED DRIFT (PARTS/DAY)

SOLUTION

EPOCH FROM ONE-WAY FROM COMBINED FROM 4-WEEK FROM 24-HOUR

(0 HOURS) SOLUTION ONE- AND TWO-WAY QUADRATIC FIT QUADRATIC FIT
SOLUTIONS

10/Ol,_J0

10/04/90

10/08/90

10/11/90

10/16/9o

10/18,/90

10/22/90

10/25/90

-39723 x 10-"

-3 6917x 10-t_

-3.7234 x 10-"

-4,3104 x 10-"

-2.8505 x 10-_

-2.4158 X 10-tl

-38783 X 10-"

-42896 x 10-=I

-4 103,4 X 10""

-3.8953 X 10-"

-3.6762 X 10""

-39550 X 10-"

-3.8755 X 10-1_

-3.8452 X 10-"
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three sources of drift values indicate good USO stability. Furthermore, the USO characteris-

tics have so far remained essentially unchanged during the course of COBE's in-flight life.

Finally, an evaluation of the random noise level on the one-way Doppler data was performed.

Again, the statistical properties of the mean observation residuals were used to infer charac-

teristics of the raw Doppler data. The 24-hour solutions provided residual data for noise

analysis. A technique called Variate Differenced Noise Analysis (VDNA) was applied to the

selected set of measurement residuals. A pth-order variate difference, 6p, is given by

_p n-p

(ALP)2 n! n!

= i=l

(n - p) (2n)!

where n = number of data points

Aip = ith pth-order difference computed from the data points

Since the differencing operation tends to eliminate nonrandom trends in data, the VDNA

computation provides a measure of randomness. As the order of the variate difference grows,

the elimination of deterministic variation becomes more thorough. On the other hand, fewer
terms in the variate summation become available. The third-order variate difference was

computed for this study. A discussion of VDNA is provided in Reference 9.

In the current application, the measurement noise levels provided by VDNA can reveal

periods of large ionospheric scintillation of the tracking signal. A scatter plot of 10-second

one-way Doppler noise from VDNA is provided in Figure 6. The greatest noise levels appar-

ent in Figure 6 coincide with transits of COBE through the Earth's polar regions where track-

ing measurements are particularly susceptible to ionospheric disturbance.

ORBIT DETERMINATION ANALYSIS RESULTS

Figure 7 shows the maximum total position differences for the one-way, two-way, and com-

bined one-way and two-way overlap comparisons. Figure 8 shows how the comparison varied

over time for a typical case. The maximum total position differences for the overlap compari-

sons fell within similar ranges for the three solution types (10 meters to 73 meters, 20 meters

to 75 meters, and 15 meters to 72 meters for the one-way, combined, and two-way cases, re-

spectively). The largest disparity between comparison results for a given comparison interval

was 30 meters. An overlap comparison is essentially a consistency measure. While it is true

that a poor solution can be self-consistent, a good solution must be self-consistent. In fact,

overlap comparison results can justifiably be used as a lower bound on definitive orbit accu-

racy.

Figure 9 summarizes the results of parallel comparisons between solution types, giving the

maximum total position differences. The comparison interval corresponds to the 4-day,

613o-1 14
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10-hour definitive arc. Although a parallel comparison can demonstrate concurrent orbit SO-

lution quality for two different solutions, it is perhaps more a reflection of the correlation of
the two solutions. Thus, Figure 9 reveals best agreement when the two solutions were based

on many common tracking measurements (i.e., two-way and combined) and poorest agree-

ment when there were no tracking measurements in common (i.e., one-way and two-way).

Furthermore, the poorest parallel comparisons occurred when one-way measurements were

the fewest and the best when they were most abundant.

Figures 10 through 12 represents predictive comparison results for l-week, 2-week, and

3-week predictions, respectively. The prediction interval is measured between the end points

of the solution arcs. The maximum position differences within the definitive period occurred

usually (but not always) at the end of the later definitive arc. Since the error in the definitive
orbit becomes less significant relative tO the prediction error as the prediction interval grows,

this technique for determining prediction errors works best for long-term predictions. Large

variations are seen in the position differences for different solution arcs. This would be ex-

plained by the wide fluctuation in atmospheric density during the period under study. An

examination of the estimated values of the atmospheric drag variation coefficient, 01, given

in Table 4, shows excellent agreement among estimates for a given 4-day period but dissimi-
larity among estimates for distinct 4-day periods. Since the LOlestimates were used in the

propagation, some randomness in the prediction results might be expected (most of the pre-
dictive error is in the along-track direction). The important observation is the good consisten-

cy in the comparison results among the one-way, two-way, and combined cases for given

prediction intervals; this suggests that the one-way and two-way tracking measurements al-

lowed for similar prediction capability.
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Table 4. Atmospheric Drag Variation Coefficients (_ol) Estimated by

One-Way, Two-Way, and Combined Solutions

SOLUTION
EPOCH

(0HOURS)

10/01/90

10104190

10/08190

10/11190

10/15190

10118190

10/22190

10/25/_K)

1

ONE-WAY
SOLUTION

0.18

0.03

TWO -WAY
SOLUTION

COMBINED
SOLUTION

0.03

0.34

0.21

0.20

0.36

0.18

0.008

0.33

0.22

0.19

0.32

0.15

0.02

0.33

0.21

0.20

0.34

0.16
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Since the ionosphere tends to increase tracking measurement noise levels, long tracking sig-

nal paths through the ionosphere are preferably avoided. Figure 13 shows the accumulated

locations of COBE (from the TDRS perspective) at the times TDRS tracking of COBE was

occurring for the period under study. The figure shows that most of the tracking (both

one-way and two-way) occurred when COBE was outside the Earth's "disk", as viewed from

TDRSS. This limited tracking geometry, which resulted largely from the restricted antenna

pattern of the TDRSS antenna on COBE (visibility was limited between 65 degrees and

105 degrees of the antenna boresight), allowed little opportunity to avoid long signal path

lengths through the ionosphere. Thus, the antenna restriction was a barrier to orbit determi-

nation accuracy, whether one-way or two-way data were used. In an attempt to eliminate

tracking measurements plagued by heavy ionospheric disturbances, the atmospheric editing

criterion discussed earlier was employed. On average, this editing scheme eliminated approx-

imately 30 percent of the available tracking data.

The COBE tracking geometry contributed to accuracy degradation in a second manner.

Since COBE is in a near-polar orbit (99-degree inclination), the TDRSs each view the COBE

orbit-plane perpendicularly twice a day. For TDRS-East, this occurs at approximately 0300

Greenwich Mean Time (GMT) and 1500 GMT; for TDRS-West, it occurs at approximately

1200 GMT and 0000 GMT. Such a COBE-TDRS orientation permits little Doppler measure-

ment variation. Consequently, the along-track motion of COBE (the largest component of

the overall motion) cannot be well determined using only Doppler measurements. Thus, a

polar orbit is more favorable to two-way tracking (which involves range measurements) than

to one-way Doppler tracking. The deleterious effects of a polar orbit are still further com-

pounded by the exposure of the spacecraft to the electrically stormy polar regions.

SUMMARY AND CONCLUSIONS

The study has shown that, given a USO drift which can be compensated to 10 -11 parts per day

and given equivalent one-way and two-way tracking schedules, TDRSS one-way return-link

Doppler tracking of a user spacecraft enables orbit determination accuracy comparable to

two-way orbit determination accuracy. Similar ephemeris comparison results were observed

for one-way and two-way solutions. Overlap comparisons of 4-day arcs resulted in maximum

total position differences of at most 75 meters for both one-way and two-way cases. Parallel

4-day definitive comparisons between one-way and two-way solutions were at most 50 meters.

The 1-week through 3-week predictive comparisons produced nearly identical results for the

one-way and two-way cases. Post-helium-venting ephemeris comparison results for both the

one-way and two-way cases are an order of magnitude improved from the corresponding

venting-phase ephemeris comparison results.

Based on the postventing phase analysis, one-way return-link USO frequency-stabilized

Doppler tracking is a feasible alternative to two-way range and Doppler tracking for GSFC

FDF mission support. Furthermore, a mixture of one-way and two-way tracking measure-

ments is likely to be beneficial because of the improved tracking coverage. Thus, the conclu-

sions reached from the venting phase analysis are affirmed by the postventing phase analysis.

The one-way orbit solution accuracy achieved in this study is not at the limit of one-way accu-

racy capability, primarily because of poor COBE tracking geometry. Additional analysis
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involving a more favorable orbit geometry and less restricted TDRS visibility is needed be-

fore substantial one-way accuracy improvement can be demonstrated. Such analysis should

reexamine the USO frequency stability, since USO limitations to orbit determination accura-

cy may become more important.
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ABSTRACT

A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation

System (TONS) is currently being developed by the National Aeronautics and

Space Administration (NASA) to provide a high-accuracy autonomous naviga-

tion capability for users of TDRSS and its successor, the Advanced TDRSS

(ATDRSS). The fully autonomous user onboard navigation system will sup-

port orbit determination, time determination, and frequency determination,

based on observation of a continuously available, unscheduled navigation bea-

con signal. A TONS experiment will be performed in conjunction with the Ex-

piorer Platform (EP)/Extreme Ultraviolet Explorer (EUVE) mission to flight

qualify TONS Block I.

This paper presents an overview of TONS and a preliminary analysis of the

navigation accuracy anticipated for the TONS experiment. Descriptions of the

TONS experiment and the associated navigation objectives, as well as a de-

scription of the onboard navigation algorithms, are provided. The accuracy of

the selected algorithms is evaluated based on the processing of "realistic" sim-

ulated TDRSS one-way forward-link Doppler measurements. This paper dis-

cusses the analysis process and presents the associated navigation accuracy
results.

*This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space
Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

The Tracking and Data Relay Satellite System (TDRSS) and its successor, the Advanced

TDRSS (ATDRSS), will provide future National Aeronautics and Space Administration

(NASA) low Earth-orbiting spacecraft with telemetry, command, and tracking services.

These user spacecraft require position, time, and frequency data to maintain their opera-

tional health and safety and to annotate their science data. Currently, TDRSS supports user
spacecraft orbit, time, and frequency determination through ground-based extraction and

processing of range and Doppler tracking measurements. TDRSS provides both two-way and

one-way return-link scheduled tracking services for equipped users. Proposed enhancements

to TDRSS/ATDRSS will provide unscheduled forward-link beacon tracking services.

The capability to support user spacecraft orbit and frequency determination solely by

ground-based processing of TDRSS one-way return-link Doppler measurements increases

TDRSS availability by reducing scheduled resource requirements and alleviates some opera-
tional complexity. This capability is achieved by augmenting the second-generation TDRSS

user transponder with an external ultrastable oscillator (USO). This tracking configuration

has been flight demonstrated onboard the Cosmic Background Explorer (COBE) mission

(Reference 1); and, as a result, the decision was made to use one-way return-link Doppler

operationally to support COBE. In 1992, one-way return-link Doppler tracking will also be
used to support the Ocean Topography Experiment (TOPEX) mission.

A TDRSS Onboard Navigation System (TONS) is being developed by NASA to provide

spacecraft autonomous navigation products for low Earth-orbiting spacecraft via the on-

board extraction of highly accurate tracking measurements. TONS will decrease the user's
reliance on TDRSS ground operations and scheduled TDRSS resources while at the same

time achieving onboard accuracy commensurate with that achievable using the Global Posi-

tioning System (GPS). Various levels of upgrades to user spacecraft and TDRSS capabilities

will allow corresponding increases in the degree of user autonomy, navigation services, and

failure modes. The objective is to develop a fully autonomous user navigation system that

supports onboard orbit determination, time determination, and frequency determination,

based on observation of a continuously available, unscheduled navigation beacon signal.

TONS is being developed in three stages. The first stage is the TONS experiment, which is
being performed in conjunction with the Extreme Ultraviolet Explorer (EUVE) mission,

hosted on the Explorer Platform (EP). The EUVE TONS experiment provides an opportu-
nity to flight qualify TONS by processing Doppler data extracted on-orbit and telemetered to

the ground in a flight-emulation experiment. On future missions, TONS Block I and TONS

Block II will provide onboard user navigation. TONS Block I, the second stage, will use

Doppler data derived from scheduled forward-link S-band services to provide onboard orbit

and frequency determination. If implemented, TONS Block II, the third stage, will use
Doppler and pseudorange data derived from a continuous, unscheduled forward-link S-band

beacon service to provide onboard orbit, time, and frequency determination. The TONS

Block I and TONS Block II systems are discussed in detail in Reference 2.

Sections 2 and 3 of this paper provide an overview of the TONS experiment and a description

of the TONS Flight Software. Section 4 describes the navigation analysis method, and
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Section 5 presentsthe resultsof a preliminary analysisof the TONS navigation accuracyun-
der the expectedoperational conditions of theEP/EUVE mission. Remarksand conclusions
are provided in Sections 6 and 7, respectively.

2. TONS EXPERIMENT ON EP/EUVE

The TONS experiment requires a forward-link scheduled reference signal from a Tracking

and Data Relay Satellite (TDRS), a Doppler extractor (DE) card in the user transponder, a

USO, signal acquisition software onboard the user spacecraft, and a ground-based navigation

processor. The primary objectives of the TONS experiment follow:

To flight demonstrate the performance of the Doppler extractor card in the

second-generation TDRSS user transponder to extract high-precision Doppler

measurements from forward-link S-band signals

To flight qualify key components of an autonomous navigation processing system

that uses the extracted Doppler measurements

To flight demonstrate onboard Doppler compensation (OBDC) for supporting sig-
nal acquisition using onboard software and commands

To develop and evaluate flight software in a ground-based flight emulation environ-
ment

Successful completion of the TONS experiment will demonstrate the flight readiness of the
TONS Block I system.

The TONS experiment involves both flight systems onboard EP/EUVE and ground systems

for experiment data processing and performance evaluation. Figure 1 provides an overview

of the TONS experiment configuration. The flight and ground segments of this configuration

are described in detail in References 3 through 6.

2.1 SPACE SEGMENT

To support the experiment, EP/EUVE will accommodate the components to perform the on-

board extraction of one-way forward-link TDRSS Doppler measurements and telemeter

these data to the ground. The TONS experiment space-based components include an exter-

nal USO interfaced to the EP second-generation TDRSS user transponder that includes a DE
card, Transponder-B. For control purposes and telemetry data collection, the USO and trans-

ponder are also interfaced to the onboard computer system (OBC), a NASA Standard Space-

craft Computer (NSSC)-I, through a remote interface unit (RIU). The USO provides a stable

frequency reference to Transponder-B. A numerically controlled oscillator (NCO) in the

transponder's carrier tracking loop generates internal frequency control words (FCWs) to
maintain lock with the received TDRSS forward-link signal. The DE accumulates these inter-

nal FCWs. A Doppler count measurement is obtained by sampling the DE 40-bit accumula-

tor every 10.24 seconds. This Doppler extraction capability is discussed in detail in
Reference 7.
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Figure 1. TONS Experiment Overview

Instead of processing the Doppler measurements onboard the EP, the Doppler count data are

downlinked via the telemetry stream for ground processing. In addition, EP/EUVE will host

a Global Positioning System (GPS) receiver/processor assembly unit as a secondary experi-

ment. The downlink telemetry will also include the GPS-determined EP position, velocity,

and time and other GPS engineering data.

EP/EUVE will also demonstrate OBDC and control of TDRSS forward-link signal acquisi-

tion using an OBDC application resident in the OBC coprocessor (a MIL STD 1750A archi-

tecture microprocessor) and stored commands. This process replaces the current method of

signal acquisition, which requires the ground terminal to dynamically compensate the for-

ward-link signal to eliminate the Doppler shift and requires the spacecraft control center to

6130-2

26



[_ ::

?

request that this frequency variation be inhibited when acquisition is verified before a track-
ing service can be initiated.

2.2 GROUND SEGMENT

To support the TONS experiment, the Goddard Space Flight Center (GSFC) Flight Dynamics

Division (FDD) is developing the TONS Ground Support System (TGSS) and the operational
TONS Flight Software. The TGSS will extract embedded TONS data from the EP telemetry,

simulate the realtime onboard processing environment, assess the quality of Doppler data

downlinked from the EP, and compare EP orbit estimates derived via TONS processing with

GSFC Flight Dynamics Facility (FDF) definitive (two-way) processing and with the

GPS-derived EP ephemeris.The design for the TGSS is presented in Reference 5. The TGSS

executes in the multiprocessor environment shown in Figure 2. The institutional FDF

National Advanced Systems (NAS) and Digital Equipment Corporation (DEC) VAX proces-

sors are used to perform all TGSS support functions except for onboard environment simula-
tion. The onboard environment simulation preparation and control functions are being

developed in FORTRAN on a MicroVAX 3100. The realtime interface between the space-

craft's NSSC-I computer and the TDRSS user transponder is simulated using software devel-

oped in FORTRAN on a DEC 80286 personal computer (PC), which interfaces with the

onboard computer via a MIL STD 1553B communications link.

3. FLIGHT SOFTWARE DESCRIPTION

The TONS Flight Software schedules and executes navigation processing tasks, which consist

of state vector estimation and propagation, covariance computation, and Doppler compensa-

tion prediction. State vector estimation is performed once for each Doppler measurement

that is processed, with the option to sample the data and process less frequently. Doppler

compensation prediction is performed prior to the tracking contact to generate input FCWs

based on the predicted EP state vectors. The operational TONS Flight Software is being de-

veloped for execution in the MIL STD 1750A onboard coprocessor and operates under the

coprocessor flight executive software being flown on EP/EUVE.

The navigation algorithms selected for implementation in TONS are based on the following
goals:

Accuracy sufficient to provide a definitive ephemeris accuracy of 10 meters (1 or),

with continuous tracking of low Earth-orbiting spacecraft

• A maximum of 256K bytes for the navigation processing

Efficiency, consuming no more than 20 percent of the available central processing

unit (CPU) of a 15 megahertz MIL STD 1750A microprocessor

• Operational simplicity

• Ease of adaptability to the continuous beacon tracking environment

• Enhanced autonomy in the continuous beacon tracking environment
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Figure 2. TGSS/Flight Software Configuration

A sequential estimation algorithm was selected over a batch least-squares algorithm because

of its computational efficiency, high accuracy, lower memory requirements, and ease of

adaptability to the beacon tracking environment. To enhance the performance of the esti-

mator, a physically connected gravity process noise model, which has been adapted from the

models given in References 8 and 9, is used in the user state covariance prediction;

Gauss-Markov noise models are used for the other estimated parameters, which include cor-

rections to the atmospheric drag coefficient and reference USO frequency bias. and drift.
Lunar and solar ephemerides, coordinate transformation matrices, and atmospheric density

are computed analytically (References 10, 11, and 12). The TDRS ephemerides are com-

puted on the ground and provided as input to the navigation processor. In a TDRSS beacon

tracking environment, this information will be included in the beacon signal navigation mes-

sage.

Table 1 lists the baseline set of TONS Block I navigation algorithms. These algorithms are
defined in detail in Reference 13.
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Table 1. Summary of TONS Block I Algorithms

ALGORITHM
TYPE ALGORITHM

PRIMARY MEAN EQUATOR AND EQUINOX OF J2000.0 WITH ANALYTIC COORDINATE TRANSFORMATIONS
COORDINATE
SYSTEM

PRIMARY TIME COORDINATED UNIVERSAL TIME (UTC) WITH POLYNOMIAL COEFFICIENTS UPLINKED FOR
SYSTEM UTC-TO-UT1 COMPUTATION (UT1 = UNIVERSAL TIME CORRECTED FOR POLAR MOTION)

NUMERICAL RUNGE-KUTTA 3(4+) FOR EP AND THE TDRS STATES AND VARIATIONAL EQUATIONS
INTEGRATOR

EP • 30 x 30 NONSPHERICAL GEOPOTENTIAL [GODDARD EARTH MODEL-10B (GEM-10B)]
ACCELERATION
MODEL • EARTH, SOLAR, AND LUNAR POINT-MASSES, WITH ANALYTIC EPHEMERIS

• ANALYTIC REPRESENTATION OF THE HARRIS-PRIESTER ATMOSPHERIC DENSITY FOR DRAG

TDRS
ACCELERATION
MODEL

• 8 x 8 NONSPHERICAL GEOPOTENTIAL

• EARTH, SOLAR, AND LUNAR POINT-MASSES. WITH ANALYTIC EPHEMERIS

• SOLAR RADIATION PRESSURE

EP PARTIAL NUMERICAL INTEGRATION OF VARIATIONAL EQUATIONS, INCLUDING Jz, J3, J., AND ATMOSPHERIC
DERIVATIVES DRAG

ESTIMATOR EXTENDED KALMAN FILTER WITH PHYSICALLY CONNECTED PROCESS NOISE MODELS

ESTIMATION EP POSITION AND VELOCITY VECTORS; ATMOSPHERIC DRAG COEFFICIENT CORRECTION. CLOCK
STATE BIAS CORRECTION, AND FREQUENCY OFFSET AND DRIFT CORRECTIONS

MEASUREMENT TDRSS ONE-WAY DOPPLER WITH ITERATED UGHT-T1ME SOLUTION, RELATIVISTIC CORRECTION.
MODEL AND OPTIONAL FREQUENCY OFFSET AND DRIFT CORRECTIONS

6130-;

4. NAVIGATION ANALYSIS METHOD

In parallel with the development of the TONS Flight Software, a preliminary navigation accu-

racy analysis is being performed. This analysis has three major objectives: (1) assessment of

the expected accuracy under nominal operational conditions for the TONS experiment;

(2) evaluation of the sensitivity of the navigation accuracy to tracking schedule variations, dy-

namic modeling errors, and measurement errors; and (3) optimization of the estimation algo-

rithm to reduce the associated error contributions. When the TONS Flight Software is

available on the target platform, its operational accuracy and throughput characteristics will

be determined, and optimization of the estimation algorithms to improve performance will

be performed, if required.

The analysis process consists of the processing of "realistic" simulated tracking data using a

sequential estimation algorithm. Accuracy is determined by comparing estimated parame-

ters against the "truth" parameters from which the tracking data are derived.

Truth ephemerides are generated for EP/EUVE and two TDRSs using the fu: "e "-,odeling

parameters listed in Table 2. The nominal EP/EUVE orbit is circular, with an incl[r_ation of
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28.5 degrees and a mean altitude of 525 kilometers. The TDRS-East and TDRS-West orbits

are circular, geosynchronous, and near-equatorial, located at 41 degrees and 171 degrees

west longitude, respectively.

Table 2. Truth Ephemeris Model Parameters

PARAMETER EP/EUVE TDRS-EAST "TDRS-WEST

ATMOSPHERIC DRAG
COEFFICIENT

SOLAR RADIATION
PRESSURE COEFFICIENT

GRAVITY MODEL

ATMOSPHERIC DRAG
MODEL (F10.7 SOLAR
FLUX*, POWER OF
COSINE)

SOLAR, LUNAR
EPHEMERIDES

2.0

1.2

GEM-10B (36 x 36)

HARRIS-PRIESTER
(25o.2)

JPL DE-1 i8

N/A

1.5

GEM-10B (12 x 12)

N/A

JPL DE-118

, ,r

N/A

1.5

GEM-10B (12 x 12)

N/A

JPL DE-118

NOTE: GEM =
JPL =
DE =

GODDARD EARTH MODEL
JET PROPULSION LABORATORY
DEVELOPMENT EPHEMERIS

6130-2

*UNITS = 10-22 WA'CTS/METER2/HERTZ

These truth ephemerides are input to the Tracking Data Simulation Program of the Naviga-

tion Processing System (NPS) to simulate "realistic" one-way forward-link Doppler tracking

measurements. NPS is a version of the Research and Development version of the Goddard

Trajectory Determination System (R&DGTDS) upgraded by Stanford Telecommunications,

Incorporated, to include the capability to simulate one-way forward-link Doppler measure-

ments using a linear model for the USO frequency (Reference 14). Table 3 lists the prelimi-

nary operational USO frequency and tracking model error parameters used in the tracking

data simulation. The USO frequency model parameters are based on the performance of the

USO as determined in the COBE navigational experiment discussed in Refer-
ence 1.

Table 3. Preliminary Operational Tracking Data Simulation Parameters

PARAMETER

USO FREQUENCY BIAS

USO FREQUENCY DRIFT

DOPPLER NOISE(lo)

DOPPLER COUNTINTERVAL

TIMETAG OFFSET

VALUE

-240 HERTZ

-0.09603 HERTZ PER DAY

7 MILLIHERTZ

10.24 SECONDS

0.0

6130-2
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The TDRS-East and TDRS-West ephemerides that are used in the filter processing are

created so as to produce predicted ephemerides that are representative of 1-day predictions

generated based on operationally determined TDRS orbit solutions. The amplitude of the

ephemeris errors is based on an analysis using the operationally determined TDRS vectors.

The TDRS-East ephemeris has a maximum error of 42 meters, and the TDRS-West ephem-

eris has a maximum error of 64 meters. Figure 3 is an example of a 2-day comparison between

these 1-day predicted ephemerides and the truth ephemerides. This comparison shows that

there is a discontinuity at the day boundary, resulting from the fact that the 1-day predicted

ephemerides are based on independent daily operational TDRS orbit solutions which are not

constrained to be continuous at the day boundary.

The simulated tracking data are processed in the NPS Filter Program. The NPS Filter Pro-

gram is used in this preliminary navigation analysis because the TONS Flight Software will

not be available earlier than September 1991. The NPS Filter Program includes the majority

of the TONS Flight Software algorithms (e.g., physically connected gravity state process noise

model, 30 x 30 geopotential model, estimation of USO frequency bias and drift corrections)

but does not currently include the Gauss-Markov noise models, the analytic solar/lunar ephe-

merides, and the analytic atmospheric drag model. Table 4 lists the nominal values for the a

priori offsets in the parameters to be estimated; Table 5 lists the nominal TONS force model,

a priori variances, and filter parameters.
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Table 4. A Priori Offsets in Parameters

ESTIMATED PARAMETER A PRIORI OFFSET FROM TRUTH

EP POSITION VECTOR

EP VELOCITY VECTOR

ATMOSPHERIC DRAG COEFFICIENT

USO FREQUENCY BIAS

USO FREQUENCY DRIFT

5OO METERS (RSS)

0,1 METERS/SECOND (RSS)

10 PERCENT

8.3 HERTZ

0.0093 HERTZ/DAY

NOTE: RSS ,= ROOT SUM SQUARE e13o-2

Table 5. TONS Nominal Force Model and Filter Parameters

PARAMETER VALUE

EP GRAVITY MODEL

ATMOSPHERIC DRAG MODEL (F10.7 SOLAR FLUX,
POWER OF COSINE)

INITIAL EP POSITION VARIANCE
(KILOMETERS z)

INITIAL EP VELOCITY VARIANCE
(METERS2/SECOND)

DOPPLER MEASUREMENT STANDARD
DEVIATION (MILLIHERTZ)

USO FREQUENCY BIAS INITIAL STANDARD
DEVIATION (HERTZ)

USO FREQUENCY DRIFT INITIAL STANDARD
DEVIATION (HERTZ/DAY)

DRAG CORRECTION VARIANCE

CONSTANT RATE VELOCITY PROCESS
NOISE (KILOMETERS2/SECO ND2/SECOND)

USO FREQUENCY BIAS PROCESS NOISE.RATE

USO FREQUENCY DRIFT PROCESS NOISE RATE
(HERTZZ/DAy2/SECOND)

DRAG CORRECTION PROCESS NOISE RATE
(SECONDS -1)

GEM-lOB (30 x 30)

HARRtS-PRIESTER (250, 2)

10, 10, 10

9,9,9

50

252.77

0.1053

1.0

10-18

0.0

3,3 x 10-e

lO-S
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There are three different spacecraft state process noise models available in the NPS. A sym-

bol Q is commonly used to denote the process noise covariance matrix. The constant rate
model assumes that the process noise matrix is diagonal, with elements that grow linearly with

time. When this model is used, a set of constant growth rate parameters, one for each diago-

nal element, must be specified. The adaptive rate model is similar to the constant rate model,
except that the growth rate parameters are adaptively adjusted during the filter processing

according to an algorithm that monitors the behavior of the system model against that of the
measurement residuals at each measurement point (Reference 14). The third model is based

on the formulation known as the physically connected gravity process noise model

(References 8 and 9). In the subsequent discussion, these three process noise models will be
referred to as the constant rate (CQ), adaptive rate (AQ), and the physically connected gravity

(GQ) process noise models, respectively. In applying the CQ and AQ models to the current

analysis, only the velocity variances are assumed to be nonzero. Table 5 lists the nominal
values for the CQ velocity, USO frequency bias, USO frequency drift, and drag coefficient

correction process noise rates. The AQ algorithm requires two growth rate parameters. The

AQ results presented below were obtained using the same values as those given in Table 5 for

the velocity process noise rates for both parameters, such that the AQ model is nearly identi-
cal to the CQ model.

When the TONS Flight Software is available, the major conclusions of this analysis will be

verified using the operational software. In addition, further analysis will be performed to in-

vestigate the expected accuracy of the TONS estimation algorithms as a function of the addi-

tional algorithm tuning parameters (e.g., Gauss-Markov process noise parameters) and to

investigate the throughput characteristics of the Flight Software.

5. NAVIGATION ACCURACY ANALYSIS

The navigation accuracy analysis was performed using the simulated tracking data and se-

quential orbit determination procedures described above. An orbit determination process

requires two basic sets of input data: a set of tracking measurements and a set of parameters
for the filter processing. The navigation accuracy results presented in this section were ob-

tained using a number of different input data sets. To study the sensitivity of the filter solu-
tions to various error sources and different tracking scenarios, both the tracking

measurement set and filter processing control parameters were varied. In particular, these

input data sets were prepared to examine the sensitivity of the orbit determination accuracies

to the following:

Tracking scenarios

Dynamic and local errors, including

- Geopotential modeling errors

- TDRS ephemeris errors

- Atmospheric drag modeling errors

- Measurement noise

- USO frequency bias and drift
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5.1 SENSITIVITY TO TRACKING SCENARIOS

The sensitivity of navigation accuracy to different tracking scenarios was studied using nomi-

nal simulated tracking data (Table 3) and nominal filter processing control parameter values

(Tables 4 and 5 and Figure 3). The minimum tracking schedule for the EP/EUVE mission

consists of one 5-minute pass of one-way forward-link tracking per orbit; however, in the

TONS Block II beacon tracking mode, near-continuous forward-link tracking may be ob-

tained. Tracking data were simulated for the following three scenarios:

Two-day nominal tracking with an even distribution: one 5-minute tracking contact

every EP/EUVE orbit from alternating TDRSs, with a relatively even spacing be-

tween contacts (approximately 100 minutes), one measurement every 10.24 sec-
onds

Two-day nominal tracking with an uneven distribution: one 5-minute tracking con-

tact every EP/EUVE orbit from alternating TDRSs, with several large gaps be-

tween contacts (up to 185 minutes), one measurement every 10.24 seconds

Two-day near-continuous tracking: tracking from each TDRS whenever it is visible,

one measurement every 30.72 seconds

Figures 4 and 5 show the total root-sum-square (RSS) position differences between the truth

ephemeris and the filter solutions obtained incorporating the TDRS ephemeris errors pre-

viously defined and using the GQ process noise model for the nominal and near-continuous

tracking scenarios, respectively. After a transient period, each solution appears to reach a

steady state. The length of this transient period decreases from approximately 16 hours for

the nominal tracking scenarios to 1 hour for the near-continuous tracking scenario.

The accuracy of the steady-state solution obtained using the nominal tracking scenarios is

seen to be below 50 and 70 meters in total position for the even and uneven distributions,

respectively. This accuracy improves to approximately 12 meters for the near-continuous
scenario.

Similar solutions were obtained using the CQ and AQ process noise model options. Figure 6

shows the total EP position error in the solution computed using the CQ and AQ process

noise models for the nominal tracking scenario, with the even data distribution. However, the

magnitude of the steady-state filter covariance in the two cases is significantly different, par-

ticularly for the nominal tracking scenario. The RSS position standard deviation associated

with the covariance computed using the GQ process noise model varies between 15 and 200

meters, whereas the corresponding standard deviation associated with the covariance com-

puted using the AQ process noise model varies between 15 and 60 meters. The maximum

standard deviation obtained using the GQ process noise model is significantly larger than the

observed solution error; the maximum value occurs at the end of the propagation period be-

tween tracking contacts and is proportional to the length of the propagation. The effective

variance growth rate of the GQ model appears to be significantly larger than the process noise

rate used in the CQ and AQ models. Further analysis indicates that the behavior of the covar-

lance computed using the GQ model is consistent with that computed using a constant veloc-

ity rate of 10 -14 [(kilometers/second)E/second]. This overestimate of the covariance may arise
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Figure 6.

ELAPSED TIME (DAYS)

Total EP Position Error Using the Nominal Tracking
Scenario With CQ and AQ Process Noise Models

from the fact that the GQ model computes the gravity process noise associated with omission

of the gravitational harmonics between orders 30 and 50, whereas the tracking data are simu-

lated using a geopotential model of order 36. The reason for this difference remains under
study.

To study the stability of the filter performance over an extended period of time, 18-day solu-

tions were generated using the nominal tracking scenario with an even data distribution. The

18-day TDRS error models were constructed by repeating 2-day error models. These 2-day
models represent the 2-day prediction errors for the TDRS ephemerides and are similar in

structure to those shown in Figure 3, which model the expected daily upload of 1-day predic-
tions. Thus the predicted TDRS-East and TDRS-West ephemerides used for the 18-day filter

solutions have a piece-wise continuous structure with 9 continuous sections, each 2 days long.

All other input parameters for the filter processing were the same as those used in the 2-day
solutions discussed above. Figures 7 and 8 show the resultant errors in the filter solutions

using the GQ and AQ process noise models, respectively. The solution error for the GQ case

remains at a maximum of 50 meters after 18 days of processing, and the solution error for the

AQ case remains at a 45-meter level, with mean errors of 11.08 and 11.17 meters, respec-

tively.

In the case of nonstate estimated parameters [drag coefficient correction parameter, USO

frequency bias (b0), and USO frequency drift (b0], the steady-state solutions fluctuate about
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the true values. In the case of the drag correction coefficient, the mean and standard devi-

ation of the steady state solutions are -0.02 and 0.05 for the nominal tracking scenario and

-0.005 and 0.05 for the near-continuous tracking scenario, where the true value is 0.0, since

the nominal and truth drag models were identical except for an initial scale factor offset. The

instantaneous USO frequency bias estimates also follow the truth total bias. Figure 9 shows

that the estimated USO frequency bias for the continuous case nearly reproduces the true

total bias with a maximum error of 0.0107 hertz (5 parts in 1012) and a mean error of

0.001 hertz after 1 hour of processing. The estimated bias for the nominal tracking case

shown in Figure 10 exhibits an initial deviation from the truth but eventually converges to the

correct value with a maximum steady-state error of 0.077 hertz (4 parts in 1011) and a mean
error of 0.004 hertz.

5.2 SENSITIVITY TO DYNAMIC AND LOCAL ERRORS

Dynamic and local error sources that commonly degrade orbit estimation accuracy are the
following:

• USO frequency bias and drift

• Atmospheric drag modeling errors

• Geopotential modeling errors

• TDRS ephemeris errors

• Doppler measurement noise

• Measurement timetag errors

Corrections to the atmospheric drag coefficient, USO frequency bias, and USO frequency

drift can be estimated in the orbit determination process to reduce the magnitude of the asso-

ciated errors. Therefore, it is important to examine the accuracy with which the proposed

estimation algorithm can determine these parameters for a given tracking scenario. Accurate

estimation of the USO frequency corrections was already addressed. However, in the case of

the atmospheric drag coefficient correction, the same Harris-Priester atmospheric density

table [solar flux level (F10.7) = 250] and model [power of the cosine term (N) = 2] was used

in both the truth and filter processing, with only a small initial offset impacting the filter proc-

essing.

To provide a more realistic test, different atmospheric models were used in the truth and filter

processing for the nominal tracking scenario. Figure 11 shows the variation in the estimated

drag coefficient corrections obtained using the Harris-Priester models associated with

(1) F10.7 = 250, N = 6; (2) F10.7 = 225, N = 2; and (3) F10.7 = 225, N =6 in the filter

processing as compared with the nominal case using F10.7 = 250, N = 2. These results illus-

trate that the filter was able to readjust the correction values to reflect the changes in the

atmospheric densities brought about by modeling errors. The position accuracy associated

with these cases was found to be comparable to that obtained in the nominal case discussed
earlier.

Table 6 lists the maximum contributions to the steady-state orbit determination errors over a

2-day arc from the remaining error sources that were studied. The impact of measurement

timetag errors remains under study.
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Table 6. Maximum Contributions to Steady-State Orbit
Determination Errors

ERROR SOURCE

GEM-10B (30 x 30)

GEM-lOB (15 x 15)

"T'DRS EPHEMERIS (= 50 METERS)

DOPPLER NOISE (7 MILLIHERTZ)

DOPPLER NOISE (35 MILLIHERTZ)

MAXIMUM RSS POSITION ERROR

CONTRIBUTION (METERS)

NOMINAL

TRACKING

20

120

10

2O

30

NEAR-CONTINUOUS

TRACKING

5

2O

10

<1

<1
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Among these error sources, the nonspherical gravity errors were found to have the strongest

influence on the orbit determination accuracy. The orbit determination errors due to the

gravity model errors depend on the model and its size used in the filter solutions. Figure 12

shows the total EP position error for the nominal tracking scenario using a 15 x 15 geopoten-

tial in place of the baseline GEM-10B 30 x 30 model. Because the tracking data were gener-

ated using a GEM-10B 36 x 36 geopotential model, the true contribution from geopotential

modeling errors is expected to be larger than that shown in Table 6. The magnitude of the

geopotential error contribution remains under study.
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The error contribution from TDRS ephemeris errors was determined by processing nominal

tracking data using TDRS ephemerides with and without ephemeris errors in the filter proc-

essing. The impact of TDRS ephemeris errors associated with 1-day predictions based on

operational solutions is not very significant.

The error contribution from measurement noise was evaluated by processing tracking data

simulated with and without Doppler measurement noise. The values for the observation

standard deviation used in the filter processing were approximately 7 times the noise standard
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deviation used in tracking data simulation. The measurement noise contribution is significant

for the nominal tracking scenario but is insignificant in the near-continuous tracking scenario.

6. REMARKS

The navigation analysis results presented in the previous section are based on a preliminary

operational error model and are limited by the data simulation and sequential estimation

capabilities available at the time of the study. Further analysis is planned using a more refined

operational error model as additional data simulation and sequential estimation capabilities
become available.

The impact of Doppler measurement timetag errors on the TONS experiment navigation ac-
curacy are being evaluated. Data simulation using realistic timetag offsets has begun, and a
thorough analysis is in progress. If the errors due to poorly known timetag offsets are found to

be significant, their impact can be reduced by estimating a timetag offset parameter modeled

as a Gauss-Markov process. This approach will be studied using a VAX-based version of the

Flight Software. The expected frequency determination accuracy will also be further investi-
gated using the Gauss-Markov process modeling option available in the VAX-based version
of the Hight Software.

The preliminary operational error model used a GEM-10B 36 x 36 geopotential model to
generate the EP truth ephemeris because it was the most precise model available in NPS at

the time. As soon as the capability to use the 50 x 50 GEM-T2 geopotential model is available
in NPS, tracking data will be simulated using a truth ephemeris based on this model, and the

impact of geopotential model errors will be reassessed. In addition, the covariance predic-

tions obtained using the GQ process noise model will be reevalutated to determine if they are

consistent with this more realistic geopotential modeling error. Additional planned naviga-

tion analysis includes a more thorough analysis of the impact on performance of the tuning
parameters associated with the GQ and AQ process noise models.

7. CONCLUSIONS

The following are the major conclusions resulting from this preliminary navigation analysis
for EP/EUVE:

• An orbital position accuracy of better than 50 meters (30.) and a frequency deter-

mination accuracy of better than 0.08 hertz (4 parts in 1011) (30.) can be achieved

for a nominal tracking schedule of one 5-minute contact per orbit after 16 hours of
processing using the preliminary operational error models.

• An orbital position accuracy of better than 12 meters (30") and a frequency deter-

mination accuracy of better than 0.01 hertz (5 parts in 1012) (30") can be achieved

for a near-continuous tracking schedule after I hour of processing using the prelim-
inary operational error models.

6130-2

42



Q The orbital position accuracy was found to be most sensitive to (I) reduction in the

degree of the geopotential model from 30 to 15 and (2) periodic versus

near-continuous tracking.

Comparable navigation accuracy was obtained using either the physically con-

nected gravity process noise model or properly tuned adaptive and constant rate

process noise models.

Based on these results, a 30 x 30 geopotential model will be used in the TONS Flight Soft-

ware, and tracking contacts longer than 5-minutes are recommended whenever possible. In

addition, further study will be performed to characterize the expected Doppler measurement

timetag errors as part of the EP/EUVE prelaunch testing and to evaluate their impact on the

navigation accuracy.
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ANALYSIS OF NAVIGATION PERFORMANCE FOR THE

EARTH OBSERVING SYSTEM (EOS) USING THE TDRSS
ONBOARD NAVIGATION SYSTEM (TONS)"
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D. Folta

Flight Dynamics Analysis Branch
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K. Liu
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ABSTRACT

Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS)

has been proposed as an alternative to the Global Positioning System (GPS) for supporting the

Earth Observing System (EOS) mission. This paper presents the results of EOS navigation

performance evaluations with respect to TONS-based orbit, time, and frequency determination

(OD/TDfFD). Two TONS modes are considered: one uses scheduled TDRSS forward link service

to derive one-way Doppler tracking data for OD/FD support (TONS-I); the other employs an

unscheduled navigation beacon service (proposed for Advanced TDRSS (ATDRSS)) to obtain

pseudorange and Doppler data for OD/TD/FD support (TONS-H). Key objectives of the analysis

were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking

geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance

predictions are presented based on covariance and simulation analyses. EOS navigation scenarios

and the contributions of principal error sources impacting performance are also described. The

results indicate that a TONS mode can be configured to meet current and proposed EOS position

accuracy requirements of 100 and 50 meters (3o), respectively, as well as support onboard time

maintenance to an accuracy of 1-2 psec or better.

" This work was performed for the National Aeronautics and Space Administration (NASA)/Goddard Space
Flight Center (GSFC), Greenbelt, MD, under contract NAS 5-31500.
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1.0 _TRODUC_ON

The Earth Observing System (EOS) mission will support a multitude of science instruments on polar orbiting

platforms over a 15-year period. In the current baseline program the approved set of EOS instruments will be

distributed between two large platforms, each planned for a nominal 5-year design life. To achieve the required

15-year mission lifetime a total of six spacecraft would be launched into Sun-synchronous, high inclination orbits at

30-month intervals via expendable launch vehicles (TITAN-IV class).[1]

To support EOS navigation, science data annotation and other Wxluirements the platforms are specified to have the

capability for onboard estimation of orbit data and to provide an accurate time reference. The most stringent orbit

determination accuracy requirement for operational phase mission support is 100m (3o) with a goal of 50m (3o).[2]

This is a derived requirement for support of navigation base attitude determination (36 sec per axis).[2] The EOS

platform time reference is specified to be accurate within 10 IJsec relative to UTC.[2] Use of the Global Positioning

System (GPS) signals for orbit and time determination (OD/TD) is the current baseline for providing primary EOS

navigation support.[3]

As a backup to GPS navigation, the EOS platform is also specified to have the capability to accept ground-derived

orbit data based on TDRSS coherent tracking (2-way range and Doppler-based solutions) or noncoherent tracking

(1-way return link Doppler-based solutions). A TDRSS Onboard Navigation System (TONS) under development by

the Goddard Space Hight Center (GSFC) has also been proposed as an alternative to GPS for primary EOS navigation

support in either of two configurations, TONS-I or TONS-II.

TONS-I can be implemented with the present TDRSS configuration by using one-way Doppler data derived from

scheduled forward link S-band Single Access (SSA) or Multiple Access (MA) services to support onboard orbit and

frequency determination (OD/FD). _ Extreme Ultraviolet Explorer/Explorer Platform (EUVE/EP) mission (1991)

will provide the initial TONS-I demonstration.[4,5] A TONS-I user requires a Doppler extractor in the second

generation TDRSS user transponder, a stable reference frequency source, such as the Ultrastable Oscillator (USO)

on EUVE/EP [4], and navigation processing software. Figure 1 describes the tracking configuration for supporting

EOS platforms via TONS-I. Although TONS-I does not support user time determination O"D), the TDRSS-based

User Spacecraft Clock Calibration System (USCCS) to be used for the Gamma Ray Observatory (GRO) mission can

provide a time update capability of-1 _sec.[6] In addition, precise FD available via TONS-I could support the

estimation of clock drift corrections to preserve the time accuracy and significantly extend the interval between

required USCCS operations.

TONS-II is a proposed future capability which would enable onboard orbit, time and frequency determination

(OD/TD/FD) by processing one-way Doppler and pseudorange data derived from unscheduled forward link beacon

signals transmitted continuously (see Figure 1). This requires some enhancements to TDRSS to generate the beacon

signal and some user enhancements over TONS-I capability to process it (pseudonoise (PN) code agility and

pseudorange extractor in the transponder and associated navigation software for pseudorange processing). A

demonstration capability may be available with activation of the Second TDRSS Ground Terminal (STGT) [7], launch

of additional TDRS satellites, and dedicated use of one or two MA forward ].inks for the beacon signal. A TONS-I!

operational capability is being considered for implementation with the advent of Advanced TDRSS (ATDRSS) in the

late 1990's.[8]
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Previous predictions of navigation performance for future TDRSS/ATDRSS users (e.g., space station and polar

platform) indicate that OD/TD accuracies in the range of 20-55 m (3a) and a 0.3-0.5 }asec (3a) may be achieved.[9]

Because of this potential navigation performance capability and the weight/cost benefits of a TONS implementation,

the EOS Project initiated a GPS/TONS Trade Study to support a possible recommendation relative to EOS onboard

navigation alternatives. This paper presents the results of EOS navigation performance evaluations based on TONS

which were developed as inputs to the Trade Study.[ 10] The analysis of TONS-I and TONS-II capabilities to support

EOS navigation requirements also addresses potential performance sensitivities such as: suboptimal tracking geometry,

contact scheduling/selection, drag solution capability, and selected modeling/navigation algorithm parameters. The

following sections present the performance evaluation approach OD accuracy results, TD/FD performance using

TONS and the analysis conclusions.

2.0 EOS NAVIGATION PERFORMANCE EVALUATION

The EOS navigation task is to estimate optimal values of the spacecraft trajectory parameters and other selected

parameters used in modeling the spacecraft dynamics (e.g., drag) and TDRSS/ATDRSS tracking measurements (e.g.,

USO bias). With TONS-I, the navigation subsystem would estimate a minimum of seven parameters: three position,

three velocity and reference oscillator (USO) bias. With TONS-II at least one additional parameter, user clock bias,

would be estimated. Due to inherent inaccuracies in the dynamic and measurement models employed, uncertainties

in assumed parameters, and measurement noise, errors will arise in the estimated set of parameters.

To evaluate EOS navigation performance in both TONS modes, covariance analysis techniques were used, and

additionally, simulation runs were made for particular cases. Covariance analysis provides a statistical measure (la

estimate) of the accuracy in orbit, time, and/or frequency determination computed as a function of assumed error

contributor statistics, the tracking geometry and contact distribution, and time from a given epoch. Simulation

analysis provides a time profile of EOS navigation errors computed by differencing parameters calculated from

appropriate truth models with corresponding estimated parameters based on simulated TDRSS tracking data and a

suitable emulation of user navigation processing software. The following two subsections describe the specific

tracking configurations and scenarios assumed for the eovariance and simulation analyses.

2.1 TRACKING CONFIGURATION

The assumed TDRSS/ATDRSS tracking configuration includes two active spacecraft located in circular, 2" inclined

geosynchronous orbits stationed nominally at 41°W and 171°W. The EOS platform is assumed to be in a 705 kin,

98.2 ° (Sun-synchronous) orbit with ascending node passage set at 1:30 PM (GMT) on the epoch date: 1 December

1997. Onboard tracking data is assumed to be acquired from TDRS forward link transmissions via scheduled service

(one-way Doppler with TONS-I) or continuously broadcast navigation beacon signals (pseudorange and one-way

Doppler with TONS-II).

2.2 TRACKING SCENARIOS

If no constraints on EOS antenna pointing or other mission operations are assumed, tracking contacts could be

selected within time intervals defined by TDRS/ATDRS line-of-sight visibility and geometrical considerations. The
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latter implies satellite selection (41°W or 171°W) to achieve the highest change in Doppler during a tracking pass.

This corresponds to choosing the TDRS/ATDRS with the highest angle (0) between its radius and the EOS orbit

normal. (The maximum Doppler rate occurs when a = 90°.) Two tracking scenarios based on a "best

TDRS/ATDRS" criterion are shown in Figure 2.

During normal mission operations, TDRSS/ATDRSS will support the EOS mission with a minimum of one equivalent

single access (SA) channel for communication services. Since there may be as many as three spacecraft in orbit

simultaneously, time sharing of SA resources is likely. Consequently, for TONS-I EOS tracking, during

communication contacts may not necessarily satisfy the "best TDRS/ATDRS" and placement criteria shown in

Figure 2.

To assess the potential sensitivity to occasional missed (lost/unavailable) contacts or nonoptimal (poor geometry)

contacts, several alternative "degraded" scenarios were considered. On the other hand, the option to schedule

occasional TDRSS/ATDRSS multiple access forward link (MAF) tracking contacts to supplement inopportune or

unavailable SA contacts is feasible for EOS. Consequently, other scenarios with a combination of degraded contacts

and supplemental (5-minute) contacts, where appropriate, were also considered. Table 1 lists the assumed set of

scenarios used for analysis.

3.0 COVARIANCE ANALYSIS OF EOS NAVIGATION PERFORMANCE

To evaluate the potential navigation performance for EOS using TONS, an upgraded version of the Sequential Error

Analysis (SEA) program [11,12] was used. The program assumes Extended Kalman Filter (EKF) processing of the

tracking data and computes the uncertainty in an EOS platform's orbit, time and/or frequency determination as a

function of various error sources, and time from a specified epoch. The following subsections discuss the assumed

tracking model inputs to the SEA program (see Figure 3) and the OD/TD/FD performance results corresponding to

the tracking scenarios defined in Table 1.

3.1 TRACKING MODEL PARAMETERS

Table 2 lists the a priori uncertainties in the basic parameters assumed to be estimated for EOS navigation: three

position, three velocity, clock bias and clock drift (or frequency bias in TONS-I). Uncertainties in various systematic

and random error sources contribute to the overall covariance of the estimated parameters. The lo values of all error

sources included in the analysis for TONS-I are listed in Table 2. Changes or additions pertinent to TONS-II are

listed in an adjacent column. Since the error analysis is linear, the results for any particular systematic contributor

may be scaled up or down to note the impact of values other than those stated here,

3.1.1 Dynami c Model Error_

Errors in force modeling (gravitational harmonics, GM, CD, Ca) introduce orbit propagation errors in the interval

between tracking passes. Values in Table 2 for the gravitational harmonics are based on the GEM-T1 model [13,14].

Their contributions were evaluated individually and the composite effect determined based on the root-sum-square

(rss) of errors due to individual harmonics.
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Table 1

EOS Tracking Scenarios With TONS

TONS
Mode

TONS-I

Tracking
Scenario

A1-20
A1-10
A1-5

Tracking
Contacts

One Pass/Orbit (20 Mins)

- (10 Mins)
,, (5 Mins)

TDRS Scheduling
Criteria

Best Geometry
n n

Cl-20 One Pass/Orbit (20 Mins) Arbitrary Geometry

C2-20 Same Except Two Omitted Each Day - -

C3-20 One Pass/Orbit (20 Mins) Arbitrary Geometry, East Only
C4-20 - - Arbitrary Geometry, West Only

Cl-20+ One Pass/Orbit (20 Mins)+
Selected 5 Min Contacts

C2-20+ Same Except Two 20 Min Contacts
Omitted Each Day

Arbitrary Geometry
Best Geometry

Same

TONS-II B1 Continuous Tracking (Except in ZOE) Best Geometry

TRACKING
CONRGURATION
AND TEST CASE

DERNrT1ON

MODEL

DERNITION J

MODEL PARAMETERS

f

-gM
- ORAV. HARM.
-SOLAR RAD.

- DRAG

ORBIT
PARAMETERS:

- USER
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r
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The error due to atmospheric drag is modeled as an uncertainty in the drag coefficient, CD. Although CD would likely

be an estimated parameter, a residual effect is assumed to remain and is treated as a consider parameter with la

uncertainty equal to 10% of the assumed nominal value (CDo = 2.2). (While this is extremely conservative, further

scrutiny would not be needed unless drag becomes dominant) The impact of this error is directly proportional to the

atmospheric density (p) and spacecraft area-to-mass ratio (A/m). Computations for p were based on a Harris-Priester

atmospheric density model and elevated solar flux levels in the range of 225-325 x 10rz2 watts/M_/Hz to assess worst

case conditions. The A/m algorithm listed in Table 2 was provided by the EOS Project.

Assumed uncertainties in the gravitational constant (GM) and solar pressure coefficient (Ca) are conservative (i.e.,

high). Since their impact tends to be relatively small, more refined values are unnecessary.

3.1.2 Measurgmgnt Processing Errors

Errors in updating the estimated parameters with each new measurement arise from errors in the tracking data and

errors in modeling the measurements.

Errors in the tracking data were characterized in terms of equivalent range and range-rate noise uncertainties and

system biases. Random measurement error values listed in Table 2 are representative of scheduled (SSA/MA)

services using the EOS high gain antenna for TONS-I and the proposed ATDRSS S-band navigation beacon service

using an omni-antenna for TONS-II. Although lower random errors would apply if the HGA is available for TONS-

Il, the more conservative assumption was made for analysis.

The lc pseudorange bias values represent the composite of a residual, uniformly distributed + 10m bias attributed

to the ground stations, ATDRS and user components. This is also a conservative assumption based on ATDRSS

specifications, [9] although it is not particularly significant for OD accuracy, since it primarily affects TD accuracy.

The range-rate bias error of 0.1 mm/sec (lt_) was included primarily to observe potential sensitivity, but in any case,

it should be absorbed in the reference oscillator bias estimate.

Frequency drift in the EOS reference oscillator appears as a range-rate error which affects Doppler measurement

accuracy and as a clock bias acceleration error B which affects pseudoranging accuracy. Oscillator drift was defined

as a systematic error with a lt_ uncertainty of 101° parts per day, a level which is consistent with USO performance

specified for the TONS and COBE navigation experiments.J4,15] This value is also conservative, since /_ can be

calibrated to a few parts in 10H per day or better and virtually modeled out based on long-term trending of the

frequency bias estimates and/or observation residuals analysis.

Uncertainties in the TDRS orbit contribute directly to the measurement modeling error. The lt_ orbit error assumed

in Table 2 for TONS-I is representative of current TDRS tracking accuracy. The la error for TONS-II is consistent

with the ATDRS tracking goals [8] and the results of recent studies on tracking improvements.[16,17]
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Table 2

Key Tracking Model Parameters for EOS Covariance Analysis

Estimated

Unestimated

Systematic
Errors

(Consider)Parameters

Random
Measurement

Errors

Other
Tracking

Parameters

Parameter

EOS  HOL
_ .',', (A Priori)

Orbit ( H,C,L

EOS '1 B
'l • (A Priori)

Clock . B

Atomospherlc Drag (_D) *

Grav. Constant (GM)

Gray. Harmonics
(30 x 30)

Solar Radiation (CR)

I R
Systems Biases, t_

I

TDRS Orbit

USO §
Drift

Range

Range Rate

%

%

TONS I

1000 m

1 m/sec

N/A

2 x 10"7 parts

10_

0.1 ppm

GEM-T1
Uncertainties

10_

N/A
0.1 mm/sec

50 m

10-10 ppd

1 O" Errors

N/A

2 mm/sec

Parameter Value

- Filter Tuning:

--User Vel. Process Noise

--Clock Rate Process Noise

- Tracking Contacts

- Data Rate

TONS II

1000 m

1 m/sec

1 msec

2 x 10 7 parts

10%

0.1 ppm

GEM-T1
Uncertainties

10_

IOM

0.1 mm//sec

25 m

10-10 ppd

5 m

5 mm/sec

10-9 m2/sac 3

10-6 nsec2/sec 3

See Scenarios
in Table 1

One/lO sec

* Drag Coefficient (CD) Is assumed to be estimated (by the user novlgatlon algorlthm) with a

residual error (&CD_ trea_ed here as a consider parameter. (Nominal CD =2.2, Area/Mass =
.OOl+.0163]Slnel, (In m':/Kg) where 6 = spacecraft true anomaly from descending node)

¢N
=3
W

X
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3.1.3 Filter Tuning Parameters

Filter tuning refers to adjustment of the Kalman filter gains to control the weight given to prior estimates. The

objective is to achieve some balance between uncertainties introduced by new measurements and those caused by

propagating prior estimates with an imperfect dynamical model. The filter process noise variance rates listed in Table

2 were used throughout the analysis and found to give reasonable results. No attempt was made to evaluate the use

of dynamic tuning techniques which attempt to continually optimize parameters (e.g., in response to measurement

residual levels or modeled phenomena).

3.2 OD PERFORMANCE RESULTS

EOS navigation performance based on TONS-I or TONS-II capabilities was evaluated for each of the tracking

scenarios defined in Table 1 and for both moderate and high atmospheric density levels. Altogether, 20 cases were

considered (see Table 3), and for each the errors in an EOS platform's position, clock bias, and clock drift (or

frequency bias for TONS-I) were computed over 48 hours. A sample of the position error profiles for two cases

provided in Figure 4 shows the lt_ errors due to individual error contributors and the lt_ total (RSS) error.

A summary of the OD performance is given for each case in Table 3 in terms of la errors (peak total and mean

total)." Mean errors in all cases and even peak errors in all but three cases are within the current EOS position

accuracy requirement of 33 meters (lo).'* Results for tracking scenario B indicate that TONS-II could also support

the EOS position accuracy goal of 17 meters (lt_). With respect to error sources, the sample plots in Figure 4 show

that gravity modeling error is the predominant contributor. Effects of drag model uncertainty are not as significant

but do increase during intervals with missed or poor geometry contacts. However, this sensitivity (as indicated by

the results for tracking scenarios C1-20 and C2-20) is readily mitigated with a few supplemental (5-minute) tracking

contacts (as indicated by the results for scenarios C1-20+ and C2-20+).

3.3 TD/FD PERFORMANCE RESULTS

In addition to EOS orbit determination both TONS-I and II will enable transponder reference frequency determination

(FD) by estimating the USO frequency bias. With the availability of pseudorange data via ATDRSS beacon tracking,

TONS-II could support EOS time determination by estimating the onboard clock bias. The covafiance analysis also

provided an evaluation of EOS time and frequency determination (TD/FD) performance. Table 3 lists the mean lt_

FD errors over 48 hours for each case considered (after settling of initial transients). These results are clearly well

below the current operational requirements for transponder reference frequency uncertainty (+ 700 Hz). Evaluation

of potential TD performance with TONS-II (tracking scenario B) indicates lt_ clock bias errors of 100 - 120 nsec

(after settling of initial transients).

The errors listed in Table 3 are the maximum and average over 48 hours (after settling of initial transients)

of the lt_ total position errors.

The current EOS position accuracy requirement of 100m (3t_) and the goal of 50m (3c) have each been

divided by 3 for performance comparison purposes.
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Table 3

EOS OD/FD Performance Using TONS (via Covariance Analysis)

TONS
Mode

Atmos.

Density
Level *

Moderate

Tracking
Scenario

_t

Moderate
,i

High

_r

A1- 20

10

5

Cl-20

C2-20

Cl-20 +

C2-20 +

C3-20

C4-20

B1-Continuous

A1-20

10

5

C1-20

C2-20

C1-20

C2-20

C3-20

C¢-20

4-

4-

High Bl-Contlnuous

Moderate: 0.2-0.7x10-12kg/m 3 (Solar Flux

High: 0.3-1.8 "

At S-Band (2106.4 MHz)

l(T OD Error (m)

Mean

13

16

20

15

t7

13

14

17

16

15

18

23

16

18

14

14

18

17

9

Peak

22

24

30

25

29
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Prior to the availability of a TONS-II capability for autonomous onboard updating of the EOS time reference,

conventional TDRSS two-way ranging operations utilizing the USCCS could be employed. Clock corrections would

be determined and uplinked to the EOS time management system at a rate dependent upon the time maintenance

requirement (TM_), the USCCS accuracy (-1 psec), and the time reference oscillator (TRO) stability. For example,

with a TRO long-term stability of 10-t° parts per day clock updates would be required about every two days for TMAX

= 10 psec (or - 22 days for TMAX= 100 psec). Current EOS specifications [2] relax the time maintenance requirement

to 100 iasec when updated by ground-based operations, a sacrifice in capability to reduce the ground support impact.

Although a tradeoff between TRO stability and T_v,x relaxation might be considered, another alternative is to utilize

TONS-I FD capabilities to reduce the frequency of USCCS operations. This approach is based on calibrating the

clock drift, assuming that the TRO and transponder reference (USO) frequencies can be derived from a common

source. Future TDRSS transponders will likely be configured to accept a standard external reference frequency (e.g.,

5 or 10 MHz vs the current 19.056392 MHz). Figure 5a indicates the relevant onboard dements and data interfaces.

The Onboard Navigation System (ONS) would provide a mean offset (Tk"f) in the reference oscillator frequency (f,,)

over an appropriate averaging interval (T^va), and the time management system would compute a corresponding

incremental clock correction, (_]'/fo)T^v o. Figure 5b illustrates hypothetical clock drift profdes with and without

FD correction data twice per day. Given the FD performance stated in Table 3 and T^w = 0.5 day, the corresponding

la uncertainty in the clock updates would be _< 1.5 lasec. This level of incremental correction accuracy would be

sufficient to support the 10 psec maintenance requirement with occasional USCCS updates for absolute recalibration.

Alternatively, clock corrections derived from long-term ground-based modeling (similar to the COBE/USO

characterization [18]) could provide even tighter time maintenance accuracy and longer intervals between USCCS

updates. With the eventual availability of TONS-H, however, continuous estimation of both clock bias and drift

would enable time maintenance at the sub-microsecond level.

4.0 SIMULATION ANALYSIS OF EOS NAVIGATION PERFORMANCE

To complement the covariance analysis approach in evaluating TONS for supporting EOS navigation it was decided

to assess particular performance sensitivity concerns through simulation and to compare estimated parameters against

reference or truth data. An upgraded version of GSFC's R&D GTDS program, known as the Navigation Processing

System (NPS) [19, 20] was used for all major simulation functions: ephemeris generation, data simulation, (Kalman)

filter processing, and ephemeris comparisons. An overview of the simulation elements used for EOS OD/FD

performance evaluation is shown in Figure 6. Truth orbits for an EOS platform and two TDRSs were generated and

used in conjunction with a USO model and particular tracking scenarios (as defined in Table 1) to produce simulated

TDRSS one-way forward Doppler data."

Pseudorange tracking data generation and processing capabilities were not available in the current NPS

program, but OD/FD performance evaluatons for TONS-II were not significantly affected, since Doppler

tracking data is the most effective aid to OD/FD. The need for pseudorange data is primarily for the time-
determination function (which was not simulated).
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Table 4

Key Tracking Model Parameters for Simulation Analysis

Parameters

USO Bias (parts)

" Drift (ppd)

Drag Model (/°1) **

Grav. Harmonics

(

TDRS ) 41" W

Ephemeris
171" W

Truth
(DATASIM)

1 X 10 -12

1 X 10 -1°

0

GEM- T2

(50 x 50)

Model

(FILTER)

1 X 10 -7*

3 x 10 -10.

50% *

GEM-T1

(21 x 21)

GEM-9 + PRIORI

(2 x O) offset +

GEM-9 + PRIORI

(4 x 4) offset +

*A Priori Values at Epoch

** Drag error modeled In terms of Scalar offset to drag coefficient CD = CDo (1 +/01).
(See footnote to Table 2 for other related parameters).

Jr To produce nominal (__ 50 m) or 3 X nominal (__ 150 m) TDRS ephemeris errors

TRKG. SCHEDULE l
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Figure 6: Overview of Navigation Performance Simulation
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Processing of the simulated tracking data is performed by an EKF program which, analogous to user navigation

software, is provided with TDRS orbit data (nontruth) and various tracking model parameters. The estimated

parameters comprise EOS position and velocity states, USO bias and drift states and a drag model parameter (Pl).

Error profiles for performance evaluations were derived by comparing truth and estimated parameter data over a

specified time interval.

Three particular issues (missed or poor geometry tracking contacts, TDRSS/ATDRSS ephemeris uncertainty, and drag

estimation capability) were selected for analysis. The following subsections discuss the assumed tracking model

parameters and the performance results.

4.1 TRACKING MODEL PARAMETERS

Initial errors in the EOS orbit were set at the same levels assumed in Table 2 for the covariance analysis. Table 4

lists the a priori offsets in the USO bias and drift parameters assumed to be estimated. The initial offset for px was

set arbitrarily at 0.5" with the objective of observing estimation convergence characteristics relative to the 10%

residual error assumption made for CD as a consider parameter in the covariance analysis (see Table 2).

For this analysis, only errors in significant unestimated parameters were assumed, specifically errors in gravity

harmonics modeling and user (EOS) knowledge of TDRS orbits. For TDRS orbit error modeling, a non-truth orbit

was derived by reducing the assumed gravity model (4x4 to 2x0) and/or offsetting the epoch state vector as noted

in Table 4. These model parameters were selected to reflect expected TDRS (or ATDRS) tracking performance for

TONS-I (or II) assuming upgraded BRTS (or APLS) capabilities (.%75m - 3a).[ 17] An off-nominal error model with

degraded 'rDRS accuracy _ 150m 3o) was used to assess sensitivity in a TONS-I application prior to a BRTS

upgrade or APLS implementation.

Numerical values for other modeled parameters, measurement noise and bias, and drag model parameters (platform

A/m, solar flux level, etc.) were set at the same levels used in the covariance analysis. Filter tuning was adjusted (via

velocity state noise level) to accomodate cases with degraded TDRS ephemeris accuracy.

4.2 PERFORMANCE RESULTS

EOS navigation processing was simulated for four tracking scenarios assuming the nominal modeling parameters

stated in Table 4. These were repeated for off-nominal TDRS/ATDRS tracking errors to assess performance

sensitivities. Altogether, eight cases were considered (see Table 5) and for each case the errors in platform position,

velocity, and USO frequency bias were computed over 48 hours. Sample plots of the position error profiles (truth-

estimated position vs time) are provided in Figure 7.

A summary of the OD performance results is given in Table 5 in terms of the peak and RMS errors (after settling

of initial transients). The data indicate reasonable overall agreement between the OD errors computed for

corresponding covariance and simulation analysis cases based on TONS-I and TONS-II. However, the

contributions of TDRS ephemeris error at the levels assumed for simulation are deafly dominant over those due to

the gravity modeling error. Determining potential sensitivity to missed or poor geometry tracking contacts and/or

degraded TDRS orbit information was the intent in comparing performance between the selected TONS-I scenarios:

Al-20, CI-20 and C1-20+. As indicated by the results in Table 5, however, there is no clear distinction since each

" This equates to an initial offset of 50% from the truth model where pl = 0 (i.e., CD = (Ct_). See footnote in

Table 5 for parameter definitions.
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Table 5

EOS OD Performance Using TONS (Simulation Analysis)

TONS
Mode

Tracking
Scenario

A1-20

Cl-20

Cl-20 +

A1-20

Cl-20

Cl-20 +

B1

n

TDRS/ATDRS
Ephem Error

Nominal*

3x Nominal

Nominal **

3x Nominal
.i

*Nominal Position Error __ 50 m (10")

A) (30 ERROR (TONS-I SCENARIO AI-20)
11,o

M.o -

TDRS EPHEM ERROR=

< 150m
............ < 50m

0'00 " ' | I| _1 20 24 J '_' M _ 44 ' ' q

C) RHOI ERROR (TONS-I SCENARIO AI-20)
to

O,lJ

oJI

I).3

i 0,0

TDR$ EPHEM ERROR,"
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.............. < $0m

OD Error (m)
RMS

i
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14
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17
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is subject to occasional peak errors under the postulated circumstances. Although the baseline OD requirement (100

m) can be supported, less sensitivity in achievable with more distributed tracking which also alternates between
TDRSs (or ATDRSs) as in scenario B 1.

With respect to atmospheric drag estimation capability, sample plots of the solutions for drag coefficient offset (p_)
from an initial value of 50% are given in Figure 7 for scenarios A1 and B1. Solutions are shown for nominal and

above nominal TDRS ephemeris modeling errors. As the results in Table 5 indicate, solutions for p_ indicate

generally good convergence toward the assumed truth value of zero. Offsets are typically on the order of 0.1 or less

(which is consistent with the 10% Co error assumption used in the covariance analysis). Further analysis of the OD

performance indicates that the peaks in ephemeris errors are also correlated with intervals requiring extended orbit

propagation when the drag model was degraded (i.e., p_ not converged). In practice, Pz typically would not converge

to zero, because of mismodeling in other drag model parameters and aliasing effects in the estimation process due
to other mismodeling (e.g., TDRS/ATDRS ephemeris).

5.0 CONCLUSIONS

The covariance and simulation results for EOS navigation based on TONS indicate that:

• EOS position accuracy is within 25m (1(_) using TONS-I with a nominal scheduled tracking contact of

20 minutes/orbit and 14m (1(_) using TONS-II with unscheduled, near continuous beacon tracking.

- The current EOS position accuracy requirement, 33m (la), could be met by both TONS-I and
TONS-II. °

- The proposed EOS position accuracy goal, 17m (lo), could also be met by TONS-II (and by TONS-I
if more intensive scheduled tracking is provided).

• TONS-I with scheduled service (e.g., 20 min/orbit) is more sensitive to occasional missed, unavailable, or poor
geometry contacts than is TONS-II with unscheduled beacon service (near continuous).

• The TONS-II TD capability, 0.1 psec (lo), could easily support EOS time reference maintenance requirements
(2. 10 lasec relative to UTC).

• Both TONS-I and TONS-II provide a transponder reference frequency determination CUSO FD) capability of
better than 0.35 x 10_° parts (1(_), equivalent to 0.1 Hz (1(_) at S-band.

TONS-I FD capabilities could support maintenance of the EOS time standard if its frequency reference (TRO)
and the transponder reference 05SO) are derived from a common source. (Incremental corrections to the time

standard based on USO FD would lengthen the time between required timing calibrations with the USCCS.

" The current EOS position accuracy requirement of 100m (3(_) and the goal of50m (3(_) have each been divided

by 3 for direct comparison with covariance analysis results.
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ABSTRACT

The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed

to determine the topography of Earth's sea surface across a 3-year period, be-

ginning with launch in June 1992. TOPEX/POSEIDON is a joint venture be-

tween the French Centre Nationale d'Etudes Spatiales (CNES) and the United

States National Aeronautics and Space Administration (NASA). The Jet Pro-

pulsion Laboratory (JPL) has been designated as NASA's TOPEX project cen-

ter. However, the Goddard Space Flight Center (GSFC) Dynamics Facility

(FDF) has the capability to operationally receive and process Tracking and

Data Relay Satellite System (TDRSS) tracking data. Because these data will

nominally be used to support the day-to-day orbit determination (OD) aspects

of the TOPEX mission, the GSFC FDF has been designated to perform TOPEX

operational OD.

The scientific data, by their nature, require stringent OD accuracy in navigat-

ing the TOPEX spacecraft. The OD accuracy requirements fall into two cate-

gories: (1) on-orbit free-flight and (2) maneuver. The maneuver OD accuracy

requirements are of two types: (a) premaneuver planning and (b) postmaneu-

vet evaluation. Analysis using the Orbit Determination Error Analysis System

(ODEAS) covariance software has shown that, during the first postlaunch

mission phase (Assessment Phase) of the TOPEX mission, some postmaneuver

evaluation OD accuracy requirements cannot be met.

ODEAS results also show that the most difficult requirements to meet are

those that determine the change in the components of velocity for post-

maneuver evaluation. Additional ODEAS analysis is currently in progress to

determine whether the postmaneuver evaluation requirements can be met by

considering only those changes in velocity caused by changes in orbital ele-
ments that will result from a maneuver.

* This work was performed for the National Aeronautics and Space Administration (NASA)/Goddard Space
Flight Center (GSFC), Greenbelt, Maryland, Contract NAS 5-31500.
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1. INTRODUCTION

1.1 MISSION OVERVIEW

The Ocean Topography Experiment (TOPEX)/POSEIDON mission is a collaborative re-

search effort of the United States National Aeronautics and Space Administration (NASA)

and the French Centre Nationale d'Etudes Spatiales (CNES) and is designed to study the to-

pography of the Earth's oceans over a period of 3 years. The information in this paper was

derived primarily from Reference 1. Exceptions are noted throughout the paper.

Although, technically speaking, TOPEX refers to the NASA payload and POSEIDON refers
to the CNES payload, use of the term TOPEX throughout this paper will imply both the

TOPEX and POSEIDON payloads, unless otherwise stated. The TOPEX satellite, which is

being built by Fairchild Space Systems Division (FSSD), is scheduled for a June 1992 launch

by an Ariane 42P expendable launch vehicle from Kourou, French Guyana.

The overall goal of the TOPEX mission is to measure the height of the Earth's oceans, using

radar altimetry, to increase knowledge of oceanic circulation and provide for improved mod-

els of ocean dynamics. Detailed mission goals include the following (see Reference 2 for
more details):

• Measure the sea level to allow the study of ocean dynamics, including the calcula-

tion of the mean and variable surface geostrophic currents and the tides of the
world's oceans

• Process and verify the scientific data and distribute them in a timely manner,

together with other geophysical data, to the principal investigators

• Lay the foundation for a continuing program to provide long-term observations of
the oceanic circulation and its variability

The TOPEX spacecraft will not be launched directly into its operational orbit; rather, it will

be injected into a biased orbit and then, through a series of maneuvers, placed into opera-

tional orbit. The currently planned operational orbit requires a 10-day repeatable ground

track to an accuracy of +-.1 kilometer (km), with a 66.018 degree (deg) inclination, a semima-

jor axis of 7,714.408 kmand an eccentricity of 0.00008.

The TOPEX spacecraft attitude is three-axis stabilized, Earth-pointing, and it rotates one

revolution per orbit. In addition, the single solar array panel pitches to maintain its position

with respect to the Sun.

During normal operations, the Tracking and Data Relay Satellite System (TDRSS) will be

used for commanding, telemetry, and tracking functions. The Deep Space Network (DSN)

26-meter subnet will be used to support these functions during the TOPEX launch and during

spacecraft emergency or contingency situations. A spacecraft emergency is an event in which

the loss of the mission or spacecraft is possible. A spacecraft contingency is an event in which

the mission cannot be successfully completed using TDRSS services.

The mission is scheduled to last 3 years after launch, with a possible extension of 2 additional

years. The mission's phases are launch, assessment, initial verification, observational, and

extended observational. The definitions and activities of each phase are summarized in
Table 1.
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Table 1. Mission Phases and Activities

Phase/Definition

ii

Launch Phase

From shipment of spacecraft (S/C) to launch site
to injection of SIC into biased orbit

Activities

Assessment Phase

First 30-35 days after injection into biased orbit, or
until the S/C is placed in operational orbit

Initial Verification Phase

From end of assessment phase to 6 months after
launch

Observational Phase

From end of initial verification phase to 3 years
after launch

Extended Observational Phase

From end of observational phase to 5 years after
launch

Prelaunch testing at Kourou

Injection into biased orbit

Orientation of S/C and deployment of the solar panel

Check out S/C functions

Turn on and check out sensors

Move S/C to operational orbit

Complete assessment within 35 days

Direct overflights of NASA and CNES verification sites

Intensive analysis of sensor performance

Verification within 6 months; finalized with a

verification report

Development of TOPEX geopotentiat model [by
Precision Orbit Determination (POD) group, Code 600]

Continuous, routine collection of sensor data

Process data with verified algorithms and precision
orbits to end of mission

Ground track maintenance maneuvers

Distribution of sensor data to principal investigators

Same as in the observational phase

Because the orbit determination (OD) requirements for the three post-assessment phases--
initial verification, observational, and extended observational--are the same, the term "ob-

servational phases" will be used to characterize the requirements for all mission phases

beyond the assessment phase.

1.2 SPACECRAFT DESCRIPTION

Figure 1 illustrates the TOPEX/POSEIDON spacecraft's deployed configuration, showing

the approximate location of some of the scientific instruments and support systems. The

spacecraft consists of two modules: the TOPEX/POSEIDON Instrument Module (IM), which
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contains the scientific instruments, and the Multimission Modular Spacecraft (MMS) bus,
which includes the onboard attitude determination and control, communications, propulsion,

and power subsystems. The spacecraft bus has a mass of about 2,650 kilograms (kg), an over-

all length of about 5.4 meters (m), and a diameter less than 3.8 m.

Satellite Bus Z(mi_ Omni
Antenna

At_tude Bottom-Not

Control Module Visible)

Propulsion
Module

Global

Positioning

System Antenna

Solar

Array

Rein (4)

Microwave
Radiometer

Y

(Pi=h)

X

CRoll)

Powe_ Module
Z

Instrument Nadir

Grapple Fixture Module (Yaw}

Altimeter
Antenr_

Figure 1. TOPEX Satellite Deployed Configuration

The IM is made up of the TOPEX (NASA) payload and the POSEIDON (CNES) payload.

Table 2 describes the instruments in the TOPEX payload; Table 3 describes the instruments in

the POSEIDON payload; and Table 4 describes each subsystem of the MMS bus.

2. OPERATIONAL SUPPORT OVERVIEW

2.1 JPL RESPONSIBILITIES

The Jet Propulsion Laboratory (JPL) has been designated as the NASA TOPEX project cen-

ter and will be responsible for

• Mission operations planning, including maneuver planning

• Flight operations control, which will be performed by the TOPEX Project Opera-
tions Control Center (POCC)

• Processing and distribution of the scientific data.
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Table 2. TOPEX Payload Description

Instrument

Dual-frequency radar altimeter

,J

Three-channel microwave radiometer

Purpose

Provide altimeter measurements (Ku-band)

Provide Ionospheric correction to the altimeter

measurements (C-band)

Provide wet tropospheric correction to the
altimeter measurements

Laser Retroreflector Array (LRA) Provide laser ranging data for height calibration
and precision tracking

Global Positioning System Demonstration Receiver Provide experimental POD data
(GPSDR)

Frequency Reference Unit (FRU) Provide a timing source for the GPSDR, TDRSS,
and DSN

Table 3. POSEIDON Payload Description

Instrument

Solid-state experimental radar altimeter

Determination of Orbit Radiopositionlng integrated
from Satellite (DORIS) dual-frequency Doppler
tracking system receiver

Purpose

Provide altimeter measurements (Ku-band)

Provide Doppler-based POD data
P
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Table 4. MMS Bus Description

Subsystem

Radio frequency communications subsystem
(RFCS)

Purpose

Handles spacecraft radio frequency (RF)

communications as well as ranging and Doppler
functions

Command and data handling subsystem (CDHS) Processes spacecraft commands and telemetry,
including data recording and playback functions

Attitude determination and control subsystem Maintains spacecraft attitude
(ADCS)

Propulsion subsystem (PS) Provides fuel and thrusters for attitude and orbit
control

Signal conditioning and control unit (SC&CU) Provides command/telemetry, heater control, and
pyrotechnic control interface functions

Electrical power subsystem (EPS) Derives raw power from the solar array mounted
on the IM

Thermal control subsystem (TCS) Monitors and controls the thermal properties of
the spacecraft

The TOPEX POCC will be the interface with the FDF for operationally navigating the

TOPEX spacecraft.

2.2 GSFC/FDF RESPONSIBILITIES

The GSFC/FDF is a TOPEX support center whose primary responsibility will be to perform

operational OD for TOPEX. This designation was made because the FDF has the capability

to operationally receive and process TDRSS tracking data, which will nominally be used to

support the TOPEX mission. TOPEX OD support includes performing definitive OD and

performing orbit predictions for quality assurance, acquisition data generation, and sched-

uling purposes. The JPL POCC support will consist of using the FDF's OD solution to

perform operational orbit predictions for mission planning. According to the current plan,

JPL will perform all attitude-related support and all mission analysis and maneuver support

(exclusive of OD).

FDF support activities for the various mission phases are described below:

Prelaunch: Support during this period will consist of requirements analysis, system

definition and specification, software development, software testing, interface test-

ing, and mission simulation activities.

Launch: The FDF support will consist of monitoring the Launch Trajectory Acqui-

sition System (LTAS) data from the Ariane launch vehicle.
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Assessment: During this period, the FDF will provide pre- and postmaneuver OD
support to move the spacecraft from the biased orbit to the operational orbit; it will

also provide orbit product support.

Initial Verification: During this period, the FDF will provide routine OD, generate
orbit products, and support pre- and postmaneuver OD for periodic ground-track

maneuvers necessary to maintain the operational orbit.

Observational and Extended Observational: The FDF will support the same activi-

ties described in the initial verification phase.

3. ORBIT DETERMINATION ACCURACY REQUIREMENTS

3.1 MANEUVER SUPPORT REQUIREMENTS

Orbit maneuvers will take place in the assessment and the observational phases; however, the

purpose of the maneuvers will be different. In the assessment phase, the TOPEX spacecraft
wil! be moved from its biased orbit into its operational orbit through a series of maneuvers,

spaced roughly 3 days apart, over a period of approximately 20 days. In the observational

phases, maneuvers will be performed approximately every 30 days to maintain the 10-day re-

peat groundtrack cycle for the operational orbit.

Three different types of maneuvers--coarse, calibration, and precision--will support the

TOPEX mission. Coarse maneuvers are high-thrust, performed only in the assessment phase

and used to move the spacecraft from the biased orbit into the operational orbit. Here, high

thrust means the change in the velocity resulting from the maneuver will be greater than
100 millimeters/second. Calibration maneuvers are equivalent to coarse maneuvers, except

they will be used to calibrate the thrusters. Precision maneuvers are low-thrust maneuvers

and will be performed in the last stages of the assessment phase to achieve the operational

orbit. Low thrust means the change in the velocity resulting from the maneuver will be less

than 100 millimeters/second. Precision maneuvers will also be performed in the observa-

tional phases to maintain the spacecraft groundtrack.

For each maneuver type, the TOPEX project has defined a set of premaneuver planning re-

quirements and a set of postmaneuver evaluation requirements. Requirements for pre-

maneuver planning OD define constraints on the accuracy of the osculating orbital
parameters at the maneuver ignition. It should be noted that these requirements need to be

met 24 hours prior to maneuver ignition. Therefore, an OD solution must be obtained

24 hours prior to maneuver ignition, and then propagated up to the maneuver ignition. Post-

maneuver evaluation OD requirements involve constraints on osculating orbital parameter

changes that may arise from velocity increments at the maneuver time. These requirements
must be met 24 hours after the maneuver burnout. Tables 5 and 6 give the operational OD

requirements for maneuver planning and maneuver evaluation (Reference 3), respectively.

Note that the requirements for the precision maneuver are independent of mission phase.

3.2 ON-ORBIT SUPPORT REQUIREMENT

In addition to maneuver OD support, on-orbit free-flight OD will also be performed during

the observational phases. This on-orbit, or routine, support consists of performing OD on a
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Table 5. TOPEX OD Requirements on Predicted Osculating Elements
Used in Premaneuver Planning

Parameter

Semimajor axis (m)

Period (msec)

Calibration
Maneuver

None

Coarse
Maneuver

None

Precision
Maneuver

None

Eccentricity 1 x 10 -5 1 x 10 -5 5 x 10 .6

inclination (deg) 1 x 10.3 1 x 10 -3 1 x 10 -4

Argument of latitude

equivalent along track 670 None None
error (m)

?

r_

Table 6. TOPEX OD Requirements on Postmaneuver Evaluation of

Changes in Osculating Parameters

Parameter

Radial velocity (mrrVsec)
5.0 Ibf thruster
0.2 Ibf thruster

Cross-track velocity (mm/sec)
5.0 Ibf thruster
0.2 Ibf thruster

Along-track velocity (mm/sec)
5.0 Ibf thruster

0.2 Ibf thruster

Inclination ((:leg)

Semimajor axis (m)

Calibration
Maneuver

10
2

20
10

4

0.1

None

None

Coarse
Maneuver

10
N/A

20
N/A

4

N/A

Precision
Maneuver

N/A
2

N/A
10

N/A

0.1

5 x 10 "4 1 x 10 "4

None 0.2
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weekly basis using maneuver-flee tracking data. The solution resulting from this 7-day OD

arc will be used by JPL to perform long-term (30-day) predictions for mission planning pur-

poses. Table 7 presents the single routine support requirement.

Table 7. TOPEX Requirement on Long-Term Predictions for the
Observational Phases

Parameter

Equator longitude crossing (m)

On-orbit requirement

225 m after 30 days of prediction past end
of data span assuming no errors in solar
flux in the predicted interval

'9,

4. ERROR ANALYSIS RESULTS

The Orbit Determination Error Analysis System (ODEAS) was used to estimate the OD ca-
pabilities corresponding to the requirements given in Section 3.0. These capabilities are a

result of simulations using a weighted Baysian least squares process.

Two 3-sigma error models have been used in this analysis. The first, referred to as the nominal

error model (Table 8), represents the 1990 capabilities of the GTDS program to support the

TOPEX mission. The second model, called the optimistic error model, assumes zero errors

in the Earth mass constant (GM) and geopotential field. It also assumes station location com-

ponent uncertainties of 1 meter. These two models give bounds on the expected OD capabili-
ties.

Table 9 presents the requirements and the corresponding maneuver planning OD capabilities

using a 3-day definitive period and a 24-hour prediction. The only requirement that is not met
involves the semi-major axis in conjunction with the nominal error model. Failure to meet

this constraint is a result of the uncertainty in the gravitational field of the Earth, which uses

the GEM 9 model. The a priori sigma for this error source will be reduced substantially with

the use of the GEM T2 gravity field representation, which is currently available and is ex-

pected to be incorporated into GTDS by the time of launch. It is therefore reasonable to
assume that all requirements on osculating elements for maneuver planning will be achieved.

Before discussing the postmaneuver evaluation OD analysis results, it is important to note

that the JPL perceived the need for a math process corresponding to that used for maneuver

evaluation of deep space trajectories. This process assumes a data span that includes tracking

data before and after a maneuver and solves for the epoch state vector at the beginning of the
data span and velocityincrements at the time of the maneuver. Currently, the ODEAS covari-

ance program does not have the capability to model maneuvers in this manner.

These ODEAS limitations have introduced the need for a mathematical technique that

approximates, as closely as possible, the desired procedure. The selected process assumes
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Table 8. Error Sources and Associated 3-Sigma Uncertainties for the Nominal
Error Model

3-Sigma Uncertainty

GM x (3 x 10-7)

Parameter

GM

Gravity Field

CD

Solar Flux (watts/m2/Hz)

CR

TOPEX
TDRS-E
TDRS-W

Station Positions
Ascension BRTS

Alice Springs BRTS
White Sands BRTS
White Sands GRND

Local X
Local Y
Local Z

Troposphere

Ionosphere
From Stations
From TDRS-E
From TDRS-W

135%(GEM9 - GEMT)(1,1)THROUGH (21,21)

PLUS

100%(GEMg)(22,22) THROUGH (30,30)

30% when not solved for

Nominal = 225

30%
2%
2%

15m
15m
30 m

45%

100%
100%
100%

Measurements

BRTS Range (m)
TDRSS Range (m)
TDRSS R/R (mm/sec)

2-Way

1-Way

Noise Weight Sigma Bias

1.5 3.0 x 10 -4 7.0
1.5 90.0 7.0

2.82 100.0 0.0

4.00 4.0 0.0
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Table 9. OD Requirements and Capabilities on Predicted Osculating

Parameters Used in Maneuver Planning

Definitive period = 3 days
Solar flux = 225

Parameter

Semimajor axis (m)

Most

Maximum 3-Sigma Error

Nominal

3.0

Stringent

Requirement
IIII ii

1
,i

Capability

Optimistic

0.1

Period (msec) 4 3.9 0,1

Eccentricity 5 x 10-6 0.7 x 10-6 0.4 x 106

Inclination (deg) 1 x 10 .4 0.6 x 10 .4 0,2 x 10 .4
,=

Along track (m) 670 29 16

"7
A

instantaneous maneuvers and involves the differencing, parameter-by-parameter, of two

error budgets at the time of the maneuver. The first error budget is obtained from tracking

data coveting only the postmaneuver time interval. The second error budget is obtained from

tracking data coveting only the premaneuver time interval.

Table 10 summarizes the requirements and OD capabilities for postmaneuver evaluation of

the errors in the changes of parameters. The results indicate that the nominal error model

produces change-of-parameter errors that are larger than the requirements for all parame-

ters except the inclination. The optimistic error model produces errors in the changes of pa-

rameters that exceed the requirements for only the radial and along-track components of

velocity. All results are based on 3 days ofpremaneuver tracking data and 24 hours of post-

maneuver tracking data.

Additional analysis is currently in progress to determine the error in the components of veloc-

ity assuming the errors were limited to those associated with the orbit elements. Preliminary

results show that the errors in the along-track component noted in Table 10 are reduced from

2.8 and 2.4 millimeters/second for the nominal and optimistic models to 0.18 and 0.06, re-

spectively. These latter values meet, or only slightly exceed, the requirement of 0.1 millime-
ters/second noted in Table 10. Additional simulations, which assume a lower mean value of

solar flux, indicate a corresponding reduction in the errors of all parameters.

Table 11 presents the requirement and orbit prediction capability for the error in the equator

longitude crossing. As can be seen, the requirement is easily met. For a complete description

of the analysis procedures, see References 4 and 5.
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Table 10. OD Requirements and Capabilities on Postmaneuver

Evaluation of Changes in Osculating Parameters

Parameter

i

Velocity (mm/sec)

Radial

Cross track

Along track

Inclination (deg)

SemlmaJor axis (m)
,=,

Table 11.

Premaneuver orbit = 3 days
Solar flux = 225

Maximum 3-Sigma Error

Most

Stringent
Requirement

2.0

10.0

0.1

1.0 x 10 .4

0.2

Capability

Nominal

13.0

14.0

2.8

0.6 X 10 .4

0.39

Optimistic
i

8.9

7.1

2.4

0.3 x 10 -4

0.12

J

Orbit Prediction Requirement and Capability for the

Error in the Longitude of the Equator Crossing

Parameter

Equator longitude
crossing after 30 days
prediction past the
data span (m)

Maximum 3-Sigma Error

Requirement

225

Capability

Nominal

40

Optimistic

30 O

i

5. CONCLUSIONS

The error analysis results using the ODEAS program supports the following conclusions:

• All premaneuver planning OD requirements on the predicted osculating elements

can be met using a 3-day OD arc with a 24-hour prediction.

• Some postmaneuver evaluation OD requirements cannot be met using a 3-day pre-

maneuver OD arc and a 24-hour postmaneuver arc.

• The long-term (30-day) prediction requirement for the equator longitude crossing
can be met.

6130-4
76



The above conclusions are based on the results using the optimistic error model, which as-

sumes zero errors in the geopotential model and station location position errors of 1 m. In

truth, the errors associated with the GEM T2 geopotential model, to be used for TOPEX

operational support, lie somewhere between the nominal and the optimistic model errors.

However, based on preliminary analysis results, the GEM T2 geopotential errors are closer to
the optimistic model errors than to the nominal model errors.
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ABSTRACT

The Flight Dynamics Division (FDD) at the Goddard Space Flight Center

(GSFC) commissioned Applied Technology Associates, Incorporated, to de-

velop the Real-Time Orbit Determination/Enhanced (RTOD/E) system as a

prototype system for sequential orbit determination of spacecraft on a DOS-

based personal computer (PC). This paper presents an overview of RTOD/E

capabilities and presents the results of a study to compare the orbit determina-

tion accuracy for a Tracking and Data Relay Satellite System (TDRSS) user

spacecraft obtained using RTOD/E on a PC with the accuracy of an estab-

lished batch least-squares system, the Goddard Trajectory Determination Sys-

tem (GTDS), operating on a mainframe computer.

RTOD/E was used to perform sequential orbit determination for the Earth

Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determina-

tion System (GTDS) was used to perform the batch least-squares orbit determi-

nation. The estimated ERBS ephemerides were obtained for the August 16-22,

1989, timeframe, during which intensive TDRSS tracking data for ERBS were

available. Independent assessments were made to examine the consistencies

(overlap comparisons for the batch case and covariances and the first meas-

urement residuals for the sequential case) of results obtained by the batch and

sequential methods. Comparisons were made between the forward filtered
RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the

solution differences were less than 40 meters after the filter had reached steady

state.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space

Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

This paper describes a prototype of a sequential orbit determination system and compares the

orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System
(TDRSS) user spacecraft using this prototype system with that achieved using an established
batch least-squares system.

The National Aeronautics and Space Administration (NASA) has completed a transition

from tracking and communications support of low Earth-orbiting satellites with a

ground-based station network, the Ground Spaceflight Tracking and Data Network
(GSTDN), to the geosynchronous relay satellite network, the TDRSS. TDRSS currently con-

sists of three operational geosynchronous spacecraft (TDRS-East, TDRS-West, and
TDRS-Spare) and the White Sands Ground Terminal (WSGT) at White Sands, New Mexico.

TDRS-East, TDRS-West, and TDRS-Spare are located at 41,174, and 171 degrees west lon-

gitude, respectively. The ground network provided only about 15-percent visibility coverage,

while TDRSS has the operational capability to provide 85-percent to 100-percent coverage.

The Bilateration Ranging Transponder System (BRTS) is used to provide range and Doppler
measurements for each TDRS. The ground-based BRTS transponders are tracked as if they

were TDRSS user spacecraft. Since the positions of the BRTS transponders are known, their
ranging data can be used to precisely determine the trajectory of the TDRS spacecraft.

To meet stringent accuracy requirements for definitive and predicted ephemerides in a timely

manner for future low Earth-orbiting missions, there is an ongoing effort at Goddard Space
Flight Center (GSFC) to improve the orbit determination methods and the analysis of them in
such areas as force modeling, geophysical modeling, observation corrections, estimation
methods, propagation methods, and numerical methods. Assessment of the relative orbit

determination accuracy of the sequential and batch least-squares estimation methods is the
focus of this paper.

The orbit determination methods used in this study are the batch least-squares method used

for current operational orbit determination support and a sequential method implemented in

a prototype system used for analysis at the GSFC Flight Dynamics Facility (FDF). The batch

weighted least-squares algorithm implemented in the Goddard Trajectory Determination
System (GTDS) estimates the set of orbital elements, force modeling parameters, and

measurement-related parameters that minimize the squared difference between observed

and calculated values of selected tracking data over a solution arc. GTDS resides and oper-

ates on the mainframe computer system at the FDE The sequential estimation algorithm
implemented in a prototype system, the Real-Time Orbit Determination/Enhanced

(RTOD/E), simultaneously estimates the TDRSS user and relay spacecraft orbital elements
and other parameters in the force and observation models at each measurement time.

RTOD/E performs forward filtering of tracking measurements using an extended Kalman

filter with a process noise model to account for geopotential-induced errors, as well as Gauss-
Markov processes for drag, solar radiation pressure, and measurement biases. The main fea-
tures of RTOD/E are described in Section 2.

RTOD/E and GTDS are used in this study to perform orbit determination for the Earth Radi-

ation Budget Satellite (ERBS) and the TDRSs. The estimated ERBS ephemerides were
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obtained for the August 16-22, 1989, timeframe, during which intensive TDRSS tracking data

for ERBS were available. This particular timeframe was chosen because detailed orbit deter-

mination analysis was previously performed using GTDS (Reference 1). Comparisons were
made between the RTOD/E and GTDS results. Independent assessments were made to ex-

amine the consistencies (overlap comparisons for the batch case and state error covariances

for the sequential case) of results obtained by the batch and sequential methods.

Section 3 of this paper describes the orbit determination and evaluation procedures used in

this study, and Section 4 gives the results obtained by the batch least-squares and sequential

estimation methods and provides the resulting consistency and cross comparisons. Sec-

tion 5 presents the conclusions of this study.

2. DESCRIPTION OF RTOD/E

RTOD/E was recently developed by Applied Technology Associates, Incorporated (ATA) for

the GSFC Flight Dynamics Division (FDD) to respond to the need for a real-time estimation

capability, to address future increased TDRSS-navigation accuracy requirements, and to pro-
vide automation of some routine orbit determination operations. The goal for future orbit

determination accuracy is 10 meters (la) total position error for the user and 25 meters (l_r)

total position error for the TDRSs. RTOD/E provides a proof of concept for the use of

sequential estimation techniques for orbit determination with TDRSS tracking data and

offers the potential for enhanced accuracy navigation with real-time responsiveness.

RTOD/E is a research tool for assessment of sequential estimation for FDF navigation appli-

cations in realistic operational situations.

RTOD/E uses an extended Kalman filter for sequential orbit estimation. With the sequential

estimation method, each tracking measurement can be processed immediately upon receipt

to produce an update of a spacecraft's state vector and auxiliary state parameters. This fact
makes it well-suited for real-time or near-real-time operation. Sequential estimation is par-

ticularly well-suited to the development of systems to perform orbit determination autono-

mously on the spacecraft's onboard computer (Reference 2). Spacecraft orbit determination

during and just after a maneuver is a critical support function for which orbit determination is
needed in near-real-time. Therefore, sequential estimation is also well-suited for such an

application. In addition, the forward filter can be augmented with a backward smoothing

filter to further improve the overall accuracy, especially during periods without tracking data.

RTOD/E employs a sequential estimation algorithm with a process noise model to stochasti-

cally account for gravity model errors (References 3 and 4). In addition to the state vectors,

the filter estimates flee parameters of the force model and the measurement model, treating

these parameters as random variables whose behavior is governed by a Gauss-Markov sto-

chastic process. The primary capabilities of RTOD/E are the following:

Simultaneously determine orbits for a TDRSS user and two TDRS spacecraft using

TDRSS with/without BRTS tracking measurements.

• Separately determine the TDRS orbit using BRTS tracking measurements.
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Perform near-real-time orbit determination when supplied with near-real-time

tracking data through NPI.

• Perform orbit determination using archived tracking data.

• Process TDRSS and BRTS range and two-way Doppler tracking measurements.

• Perform predictions for spacecraft orbits.

Generate graphical displays of the spacecraft covariance estimates, measurement

residuals, and ground-track while concurrently processing data.

For each tracking configuration, estimate the spacecraft state vector, drag parame-

ter, and solar reflectivity coefficient for the user spacecraft; the solar reflectivity co-

efficients for the TDRSs; and the range and range-rate bias. The estimated

parameters are obtained sequentiall_, after processing each measurement.

The NAS-to-PC Interface (NPI) is used for the near-real-time extraction and transfer of

TDRSS and BRTS tracking data from a tracking data base on the NAS 8063 mainframe com-

puter to the RTOD/E PCs (Reference 5).

3. ORBIT DETERMINATION AND EVALUATION PROCEDURE

This section describes the analysis procedures used in this study. The TDRSS and BRTS

tracking data characteristics are presented in Section 3.1, and the orbit determination evalua-

tion methodology and options used are described in Section 3.2.

3.1 TRACKING MEASUREMENTS

The user spacecraft chosen for this study was the Earth Radiation Budget Satellite (ERBS),

which was deployed by the Space Transportation System (STS)-41G in October 1984. ERBS

has a nearly circular orbit, with an altitude of approximately 600 kilometers, an inclination of

57 degrees, and a period of approximately 96 minutes. The time period chosen for this study

was from 0 hours Greenwich mean time (GMT) on August 16, 1989, through 10 hours GMT

on August 23, 1989. During this interval, an unusually dense TDRSS tracking of the ERBS

satellite was made available. Another significant component of the tracking characteristics is

that the tracking was scheduled by alternately using both relay spacecraft on a pass-by-pass

basis. The tracking consisted of an average of 25 15-minute passes of two-way TDRSS range

and Doppler observations each day. A timeline plot of the TDRSS tracking data distribution

is given in Figure 1.

The typical scenario for BRTS tracking of the TDRSs during the period of study included

approximately 4 minutes of range and two-way Doppler measurements from two ground

transponders for each relay every 2 to 3 hours. BRTS stations for TDRS-East are located at

White Sands and Ascension Island. BRTS stations for TDRS-West are located at White

Sands, American Samoa, and Alice Springs, Australia. The Alice Springs station was inop-

erative during August 1989, the period of this study.
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Figure 1. Tracking Data for ERBS

3.2 EVALUATION METHODOLOGY

The evaluation methodologies for the batch least-squares and sequential estimation methods

are described below. Table 1 gives the parameters and options for the simultaneous solutions

of the user and relay spacecraft. Table 2 gives the force and measurement model specifica-
tions. Since there are some known differences between the GTDS and RTOD/E force models

and since the RTOD/E TDRSS and BRTS measurement models were implemented inde-

pendently from GTDS, the two systems are not expected to provide identical results. There-

fore, this study assumes that each system is used in its optimal configuration.

Batch Least-Squares Method

Except for the variations noted, the computational procedures and mathematical methods

used in this study are those used for routine operational orbit determination at the GSFC

FDE The batch weighted least-squares algorithm implemented in GTDS (Reference 6)

solves for the set of orbital elements and other parameters that minimizes the squared differ-

ence between observed and calculated values of selected tracking data over a solution arc.

6130-5

83



Table 1. Parameters and Options for the Simultaneous Solutions of

User and Relay Spacecraft

ORBIT DETERMINATION

PARAMETER OR OPTION

ESTIMATED PARAMETERS

INTEGRATION TYPE

CC<_RDtNATE SYSTEM OF

INTEGRATION

INTEGRATION STEP SIZE

(SECONDS)

TRACKING DATA

DATA RATE

GTDS VALUES

USER

(ERBS)

iiii1|1

STATE. DRAG SCAUNG

PARAMETER (0t).
RANGE AND DOPPLER

MEASUREMENT

BIASES FOR TRACK-

ING VIA EACH "r_ts

RXED-STEP COWELL

MEAN OF I gSO.O

30.0

TDRSS

1 PER 10 SECONDS

RELAY

(TDRS-EAST &

TDRS-WEST)

STATE. TRANSPONDER
DELAYS FOR EACH

BRTS TRANSPONDER

FIXED-STEP COWELL

MEAN OF 1950.0

600.0

BRTS

1 PER 10 SECONDS

USER

(ERBS}

STATE. COEFFICIENT
OF DRAG. RANGE AND

DOPPLER MEASURE-

MENT BIASES FOR
TRACKING VIA EACH

TDRS

VARIATION OF

PARAMETERS

MEAN OF 19500

eO0

TDRSS

1 PER B0 SECONDS

DC CONVERGENCE PARAMETER

EDITING CR.ITERION

MEASUREMENT o'$:

RANGE

DQPPLER

GAUSS-MARI_OV PARAMETERS:

DRAG HALF-UFE

DRAG S_3MA

C_ HALF-UFE

C_ SIGMA
RANGE BIAS HALF-UFE

RANGE BI/_ SIGMA

DOPPLER BIAS HALF-UFE

DOPPLER BIAS S_3MA

SATELUTE D_AMETER

SATELUTE MASS

0005

3¢

30.0 METERS

0.25 HERTZ

N/A

2.45 METERS

0005

3o

10.0 METERS

0.003 HERTZ

NIA

9.42 METERS

21 I8 KILOGRAMS 2068 KILOGRAMS

N/A

3o

0.4 METER

0,004 HERTZ

720 MINUTES
0.5

WA

N/A
60 MINUTES
8 METERS

00 MINUTES
0.034 HERTZ

2.45 METERS

2116 KILOGRAMS

RTOD/E VALUES

RELAY

_DRS-EAST&

TDRS-WES_

STATE. SOLAR REFLEC-

TIVITYCOEFF_IENT(C_).
RANGE AND[X3PPLER

MEASUREMENT BIASES

FOR TRAC_NG V_EACH

TRANSPONDER

VARIATION OF

PARAMETERS

MEAN OF 1950.0

6000

BRTS

1PER6OSECONDS

N/A

3o

025 METER

0002 HERTZ

N/A

N/A

11520 MINUTES

0,2

60 MINUTES

4.5 METERS

60 MINUTES

002 HERTZ

g,42 METERS

2068 KILOGRAMS

N/A = NOT APPLICABLE
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Table 2. Force and Measurement Model Specifications

ORBIT DETERMINATION

PARAMETER OR OPTION

G EOPOTENTIAL MOOEL

ATMOSPHERIC DENSITY MODEL

SOLAR AND LUNAR EPHEMERIDES

SOLAR REFLECTNfTY COEFFICIENT

(c.)

COEFFICIENT OF DRAG (Co)

IONOSPHERIC REFRACTION

CORRECTION

GROUND-TO-SPACECRAFT

SPAGEC_-TO-SPACECRAFT

TROPOSPHERIC REFRACTION

CORRECTION

ANTENNA MOUNT CORRECTION

POLAR MOTION CORRECTION

EARTH TIDES

USER

(ERSS)

GEM-T2 (50 x 50)

HARR_-PRIESTER FOR

SOLAR FLUX 225

JPL DE-118

12

ESTIMATED

BENT MODEL

NO
YES

YES

NO

YES

YES

GTOS VALUES

RELAY

(TDRS-EAST &
TDRS-WEST)

GEM-T2 (8 x 8)

N/A

JPLDE-118

SEE TEXT

N/A

BENT MODEL

YES

USER

(ERBS)

GEM- lOB (30 x 30]

JACCHIA-WAU_'R
DAILY SOLAR FLUX

VALUES (253, 258.

258, 243, 231,220.

2OO)

ANALYllCAL

12

ESTIMATED

NO

N/A

YES

NO

YES

NO

YES

NO

NO

NO

RTOD/E VALUES

RELAY

CrORS-EAST &

TORS-WESTJ

GEM-10B (8 x 8)

N/A

ANALYllCAL

ESTIMATED

N/A

NO

YES

NO

NO

NO

GEM - GOOOARD EARTH MODEL

JPL == JET PROPULSION LABORATORY

N/A = NOT APPLICABLE

6130-5

Parameters solved for, other than the spacecraft state at epoch, include free parameters of the

force model and/or the observation model. The options used for the study described in this

paper are summarized in columns 2 and 3 of Tables 1 and 2.

The solar reflectivity coefficients (CR) for TDRS-East and TDRS-West were not estimated in
the simultaneous solutions of ERBS, TDRS-East, and TDRS-West but were applied. The

values of CR applied in the present calculations were obtained from separate solutions of

TDRS-East and TDRS-West from a previous study where CR values were estimated (Series C

and D of Reference 1).

To evaluate the orbit determination consistency achievable with a particular choice of options

using least-squares estimation, a series of seven 34-hour definitive solutions was performed

with 10-hour overlaps between neighboring arcs. The GTDS Ephemeris Comparison Pro-

gram was used to determine the root-mean-square (RMS) position differences between the

definitive ephemerides for neighboring solutions in the 10-hour overlap time period. These

"overlap" comparisons measure the adjacent solution consistency, not the absolute accuracy.

Sequential Estimation Method

RTOD/E uses a forward-processing extended Kalman filter for sequential orbit estimation.

The mathematical algorithms and computational procedures are described in References 3

6130-5
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and 4. The specific options used in RTOD/E for this study are listed in the last two columns of
Tables 1 and 2.

A good indicator of the consistency of the sequential estimation results is the state error co-

variance function generated during the estimation process (Reference 7). In addition, the

relationship of the first predicted measurement residual of each tracking pass to the asso-

ciated predicted residual variance provides an indication of the physical integrity of the state

error covariance of the filtered orbits. These parameters were monitored during the sequen-

tial estimation process.

4. RESULTS AND DISCUSSION

The results of this study for the ERBS and relay spacecraft are presented in this section, along

with an analysis of the results. Greater emphasis is placed on the ERBS results, since the

primary objective is to study TDRSS user orbit determination. The orbit determination re-

sults using batch least-squares calculations and sequential estimation are given in Sec-

tions 4.1 and 4.2, respectively; the comparisons are presented in Section 4.3.

4.1 BATCH LEAST-SQUARES RESULTS

An extensive analysis of the batch least-squares orbit determination of ERBS and the TDRSs

in terms of variations in the force models, measurement models, and solution modes was re-

ported in Reference 1. The results reported here do not significantly differ from those of

Reference 1. The only difference between the calculations of series M in Reference 1 and the

present calculations is that in the present calculations the biases on TDRSS range and

two-way Doppler measurements and the transponder delays for BRTS measurements were

also estimated. (The options used for calculations of series M of Reference 1 are the same as

those given in columns 2 and 3 of Tables 1 and 2, with the exception of the parameter set.)

The choice to expand the state space of the least-squares solutions was motivated by the fact

that the RTOD/E orbit determination algorithm estimates an equivalent set of bias parame-

ters. The resulting differences are discussed below.

The RMS values of six ERBS overlap comparisons are summarized in Figure 2. The overlap

values vary from about 4 to 17 meters. The mean and sample standard deviation of this distri-
bution, in the form of mean +_ standard deviation, is 13.3 _ 5.9 meters. The maximum total

position differences over the same distribution vary between 6 and 46 meters, with mean and

standard deviation of 29.7 +_ 14.8 meters. The maximum position difference values for

ERBS are typically a factor of 2 larger than the RMS values.

The RMS values of six TDRS-East and TDRS-West overlap comparisons are summarized in

Figure 3. The overlap values for TDRS-East vary from about 14 to 45 meters. The mean and

sample standard deviation of this distribution is 25.0 _+ 10,7 meters. The maximum total

position differences over the same distribution vary between 17 and 58 meters, with mean and

standard deviation of 33.9 _ 13.5 meters. The overlap values for TDRS-West vary from

about 19 to 42 meters. The mean and the sample standard deviation of this distribution is

25.2 + 9.0 meters. The maximum total position differences over the same distribution vary

between 25 and 63 meters, with mean and standard deviation of 35.4 _+ 14.2 meters. The
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maximum position difference values for the TDRSs are typically a factor of 1.2 larger than the
RMS Values.

The possible advantage of estimating a set of bias parameters (as was done in this study)

versus not estimating the set (as was done in the series M calculation of Reference 1) was

evaluated. The mean values of the range and Doppler measurement residuals (i.e., the

observed-minus-computed values for each solution) as calculated in Reference 1 indicated

the existence of a systematic error. The mean range measurement residuals varied between

6.3 _ 4.7 meters and 7.6 _+ 4.6 meters for the seven solution arcs. The mean Doppler meas-
urement residuals varied between -12.7 _ 91.1 millihertz and -17.5 _+ 83.6 millihertz. The

estimation of a set of bias parameters in the calculations in this study effectively removed the

systematic error, thereby significantly reducing the mean range and mean Doppler measure-

ment values, as expected. The standard deviations of the residuals were also somewhat re-

duced. However, although the removal of a bias may improve accuracy, it was not expected to

improve consistency. As a matter of fact, the mean RMS overlap value without estimating

for a set of bias parameters (series M of Reference 1) was comparable for ERBS

(13.1 __+6.1 meters) and somewhat smaller for TDRS-East (21.6 _+ 7.9 meters) and
TDRS-West (18.0 _ 9.2 meters).

4.2 SEQUENTIAL ESTIMATION RESULTS

During sequential processing of the TDRSS and BRTS measurements using RTOD/E, the

state error covariance function (2a) was closely monitored. The filter was started with high

initial diagonal values in the covariance matrix. In the initial phases of filtering, the covari-

ance values for ERBS were as high as 1200 meters and those for the TDRSs were 800 meters.

However, this is not unusual before the filter has reached steady-state performance. After an

initial filter settling period (about 24 hours), the covariance values varied from about 15 to

30 meters in the RMS position for ERBS and 40 to 60 meters for the TDRSs. The covariance

values dropped to their lowest levels during a tracking pass and then gradually rose to the

maximum values during the time update phase (propagation phase).

The first predicted range residuals of ERBS tracking passes after the filter processed the

tracking data for 5 days are shown in Figure 4. The tracking passes via TDRS-East and

TDRS-West are plotted separately. The value of the residual varied from nearly-5 meters to

about 8 meters for passes via TDRS-East and from -8 meters to about 20 meters for passes

via TDRS-West. The largest value (19.4 meters) occurred after about 1 hour of the predic-

tion period following the previous tracking pass. The larger scatter for passes via TDRS-West

is most likely attributable to the absence of BRTS tracking of TDRS-West by the Alice Springs

station. The postmeasurement-update range residuals were negligibly small, typically of the
order of 0.3 meter or less.

The estimated force model parameters varied as a function of time and were updated after

each measurement processed. The time variation of the atmospheric drag coefficient for

ERBS is shown in Figure 5. It varied from a lowvalue of 1.6 to a high value of 3.0. The time

variations of the solar radiation pressure coefficient for TDRS-East and TDRS-West are

given in Figures 6 and 7, respectively. After the filter has reached steady state, the coefficient
varied between 1.4 and 1.55.
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The solar flux values are input to RTOD/E on a daily basis. The time variation of the flux

value over the 24-hour period is not input. Therefore, the atmospheric drag coefficient has to

adjust itself for the variation (Figure 5). RTOD/E models the area of the TDRS to be a con-

stant throughout the day, whereas in actuality the TDRS area exposed to the solar flux varies

with a 24-hour period. The CR estimated values for TDRS-East, shown in Figure 6, display an

approximately repeated variation over 24-hours for the last 5 days during steady-state per-

formance. Such a clear signature of variation is not evident in the CR values for TDRS-West

shown in Figure 7.

The time variation of the estimated range bias values for ERBS via TDRS-East and

TDRS-West are shown in Figures 8 and 9, respectively. The bias values varied from approxi-

mately -3 meters to approximately 20 meters, with an average value of approximately 4 me-

ters. There are some known physical phenomena and considerations that are absorbed in the

estimation of the range bias. The variation in the offset of the ERBS antenna position from

the center of mass is not modeled in RTOD/E. The time-varying tropospheric refraction

delay and ionospheric refraction delay, which are not modeled in the measurement model,

are absorbed in the range bias estimates.

4.3 COMPARISON OF BATCH AND SEQUENTIAL ESTIMATION RESULTS

Comparisons of the estimated ERBS orbits between GTDS solutions and RTOD/E forward-

filtered solutions are presented in Figures 10 and 11. Figure 10 shows the differences during

the first day of the filtered solution. Since the filter had not reached steady state during the

early phases of this period, the position difference was as large as about 600 meters. How-

ever, this difference is not larger than the corresponding state error covariance values of the

filter, an indicator of the internal consistency of the filtered solution. After the filter had

reached steady state, the differences between the GTDS and RTOD/E solutions were much

smaller than on the first day. Therefore, these results were plotted in Figure 11 with a differ-

ent vertical scale; the position differences shown in this figure are all less than 40 meters. The

maximum difference did not increase or decrease toward the end of the 7-day comparison

period. The maximum difference of less than 40 meters is consistent within the cumulative

consistencies of batch and sequential solutions.

A significant part of the difference between the batch and sequential orbit determination re-

sults in Figure 11 can be attributed to the differences in the force and measurement models
used for GTDS and RTOD/E. Quantitative estimates for some of these model difference

effects are available from previous studies using GTDS. It was reported in Reference 1 that

the maximum position difference for definitive ERBS orbits using the GEM-T2 (50 x 50) and

GEM-10B (36 x 36) geopotential models can be as high as 30.1 __+5.2 meters. RTOD/E uses

the GEM-10B geopotential model with order and degree 30. Due to the inclusion of a proc-

ess noise model for geopotential errors in RTOD/E and its absence in GTDS, the impact dif-

ferences in the models used would be different in the two systems. Estimates of the effects of

differences in the Harris-Priester and Jacchia-Walker atmospheric density models are not

available but may be significant. The maximum position differences in the definitive ERBS

orbits due to the presence and absence of ionospheric refraction correction in the measure-

ment model for the spacecraft-to-spacecraft leg can be 2.6 _ 0.9 meters (Reference 1). The

maximum position difference due to polar motion and solid Earth tide effects are about
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8.3 _ 1.0 meters and 7.0 _+ 3.2 meters, respectively. A more detailed analysis of the influ-

ence of polar motion and solid Earth tides on ERBS orbits is given in Reference 8.

Another source of the difference between the GTDS and RTOD/E estimated ephemerides is

due to the fundamental difference in the way the estimated parameters are obtained in the

batch least-squares and sequential estimation techniques. In the batch least-squares method,

a single set of parameter values is estimated over an entire arc. In the sequential estimation

process, the set of estimated parameter values is updated at each measurement time. The

time variations in selected estimated parameters were shown in Figures 5 through 9.

Based on the magnitude of these differences and the differences in the estimation techniques,

the maximum position difference of about 40 meters between the GTDS and RTOD/E results

is not large.

5. REMARKS

The results presented in this paper were obtained using dense-tracking TDRSS measure-

ments for ERBS. A previous study of ERBS with single-relay (TDRS-East only) TDRSS

tracking has shown that to achieve the highest precision orbit determination using the batch

least-square method, the tracking coverage should not fall below 10 minutes every two orbits

(Reference 9). The tracking coverage used in the present study, as shown in Figure 2, was well

above this criterion. The impact of tracking coverage on accuracy using sequential estimation

techniques will be pursued in future studies. In theory, the filter is expected to be more sensi-

tive to large gaps in tracking data than the batch least-squares method; but, on the other hand,

it would benefit more from more continuous tracking than would the batch least-squares
method.

An investigation to assess the prediction accuracy measured by comparing propagated solu-

tions with the definitive solutions using GTDS and RTOD/E is in progress.

6. CONCLUSIONS

This study presented an analysis of TDRSS user orbit determination using a batch

least-squares method and a sequential estimation method. Independent assessments were

performed of the orbit determination consistency within each method, and the estimated or-

bits obtained by the two methods were also compared. This assessment is applicable to the

dense-tracking measurement scenario for tracking ERBS.

In batch least-squares method analysis, the orbit determination consistency for ERBS, which

was heavily tracked by TDRSS during August 1989, was found to be about 15 meters in the

RMS overlap comparisons and about 30 meters in the maximum position differences in over-

lap comparisons. In sequential method analysis, the consistency was found to be about 15 to

30 meters in the 20" state error covariance function.

After the filter had reached steady state, the differences between the definitive batch

least-squares ephemerides and the forward filtered sequentially estimated ephemerides were
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no larger than 40 meters, which is approximately the limit of the consistency for each separate

method. Since the two methods of determining orbits are algo.rithmically and computa-

tionally independent, an accuracy level of about 40 meters (3_) may be assigned to the orbits

determined by either method from the present analysis, barring any tracking-system-related

systematic error. Further studies will investigate the relative qualities of the two methods
within this difference.
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NAVIGATION OF THE TSS-1 MISSION

The Tethered Satellite System Mission was analyzed to determine its

impacts on the Mission Control Center (MCC) Navigation section's ability
to maintain an accurate state vector for the Space Shuttle during nominal and
off-nominal flight operations. Tether dynamics expected on the Shuttle
introduces new phenomena when determining the best estimation of its
position and velocity. In the following analysis, emphasis was placed on
determining the navigation state vectors accuracies resulting when the tether
induced forces were and were not modeled as an additional acceleration

upon processing tracking measurements around a TSS-1 trajectory. Results
of the analyses show that when the forces are not modeled in the state vector
generation process, the resulting solution state reflects a solution about the

center gravity (e.g.) of the tethered system and not that of the orbiter. The
Navigation team's ability to provide accurate state vector estimates
necessary for trajectory planning are significantly impeded. In addition to
this consequent is an impact to Onboard Navigation state vector accuracies.
These analyses will show that in order to preserve an accurate state onboard
the orbiter a new operational procedure would have to be adopted. Previous
Shuttle missions have shown that an accurate state could be maintained

onboard when periodic updates are made utilizing the most accurate
solution state vector computed by ground tracking data processing.
However, the forces acting on the orbiter are much larger than those which
have been modeled during previous mission and must be included in the
Onboard Navigation state vector update process. The following analyses
will show that significant improvements to state vector accuracies on both
the ground and onboard can be achieved when the forces are modeled
throughout the TSS-1 mission profile.

I

Introduction

The introduction of a Tethered Satellite System is new to the MCC Navigation section. The

dynamics imposed on the orbiter are much larger than any which have been experienced
during previously flown Space Transportation System (STS) missions. Consequently,
many pre-mission analyses have been performed to better understand the behavior of a
tethered system on the navigation process 'thereby assuring crew safety and mission
SUCCESS.

The TSS-1 mission is currently schedule for launch in February 1992. Its design includes
a 500 kg satellite which will be deployed upward and away from the earth with the aid of a
tether to a maximum length of 20 km. The tether will be electrically conductive. The
satellite, on the other hand, will be electrically positive and is designed to collect electrons

from the ionosphere. The electrons will be passed through the tether to the orbiter and
emitted with art electron emitter.

The following sections provide the results of several analyses performed in order to satisfy
the above mentioned objectives.

MCC Ground Navigation Overview

The MCC Ground Navigation section is responsible for maintaining accurate knowledge of

the Shuttle's position and velocity. This task is accomplished by utilizing the tracking
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measurementswhich are provided by space and ground basedtracking facilities
strategicallylocatedthroughouttheworld to computetheorbiter'sstate.

The analysesdiscussedin the following sectionsutilized trackingmeasurementswhich
were computed around the TSS-1 trajectories using the SpacecraftTracking Data
Simulation(STDS)program. Themeasurementscomputedincludedthosefrom selected
C-bandstationsand both Tracking Data Relay Satellites(TDRSE,TDRSW). C-band
stationswith amaximumelevationbelow3 degreeswerenot includedin theanalysesdue
to their likelihood of inherently introducing erroneousmeasurementscausedby
atmosphericrefraction.

The GroundNavigationteamprocessesthesemeasurementsusingtrajectoryapplications
inherent in theMission Operationscomputer(IvIOC). Trackingmeasurementsmaybe
processedin bothahomogeneousor heterogeneousfashion.Thehomogeneousmethodis
referred to astheBatch-to-Batch(BB) mode. Measurementsfrom a singletrackerare
processedto determinetheorbiter'sstate.Theheterogeneoustechniqueontheotherhand,
acknowledgesmeasurementsfrom severaltrackersfor whichtheorbiterwasvisibleover
someorbitaltimeframeandisreferredto astheSuperbatch(SB)mode.

Thetwo techniquesutilize aweightedleastsquaresprocessorwhichcomputesthestateof
the orbiter upon satisfying _aset of convergencecriteria for the measurements,(e.g.,
Doppler, range,elevation, azimuth), consideredin thecomputationof the state. The
quality of thestatevectorcanbedeterminedby minimizationthemeasurementresiduals
resultinguponexecutionof theweightedleastsquaresprocess.

Analysis Overview

The analyseswere performedfor trajectoriesdefinedby theTSS-I DesignReference
Mission (DRM), baselinedMarch 18, 1990. Thetrajectoriesincludedall of theeffectsof
tether dynamicson the orbiter as computed by the Shuttle Tethered Object Control
Simulation (STOCS). The tether community at the Johnson Spacecraft Center (JSC) have
relied heavily on STOCS to determine the behavior of tethers during Shuttle operations.

Current flow expected during the mission were briefly analyzed but did not provide a
significant orbital perturbation. Table (1) provides a detailed mission timeline for the
DRM.

The analyses were performed to assess whether the MCC Ground Navigation section could
successfully support TSS-1 under both nominal and off-nominal flight conditions. The
off-nominal scenario which will be discussed is that of the impacts of a tether cut on Shuttle
navigation. Also included is an assessment of the frequency at which the Onboard

navigation state vector would needed to be updated to preserve flight rules which protect
for a safe deorbit in the event of a loss of communication between the ground and crew is

experienced.

The primary objective of the Navigation team during STS mission is to provide accurate
state vectors to the Flight Dynamics Officer (FDO) to assist in trajectory planning (e.g.,
translational maneuvers, deorbit burns, contingency operations, etc.). The configuration of
the tethered system introduces larger external forces on the orbiter than have been

experienced in previous missions. There also exist the phenomenon which in given two

orbiting bodies of different masses, attached by a tether, a center of gravity !c.g.) point is
defined along the tether. Experience has shown that when processing tracking
measurements around a trajectory influenced by tethered dynamics, resulting solution state
vectors may be biased to reflect solutions about the c.g. of the system and not that of the
orbiter. The following analyses will show that successful navigation of the TSS-1 mission
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can only beachievedby modeling the tetherforcesasanadditionalaccelerationwhen
computingtheorbiter'sstate.

Table1
ATTITUDETIMELINE

A"I-IYI"U'DE

I
9

10
11
12
13
14
15
16
17
IS
19
20
21
22

25
26
27
2g

29
30
31

TL\_
(DY'.HR :_'_'N:SEC)

l .:00:00:00
1.'00:45:03
| :01:46.-00
1:01:51.-03
1."02-.'07;30
1 :q'2:3_:.30
1:0a ;55:.'30
1.'07:16.'O3
1 .'07:-_ ."CO
1 :_:21.:00
1:10:16:00
1:10:.t.6:£0
1:11:2430
1:13:16.'00
1:13:..t6:¢0
1:14 :.-'0.'O3
1:14:4.6:e0

__ 1:15.'06:'('0
1:19._.26.._
1".21:27;O3
1 ".21:,',.6.'120
1"3.I ".50.'_
1-_._:'Cd:00
1;23:13:0.)
] ".23:t 3._0
1".23:33.'O3
2:01 "._.'03
2:01 :_tg:00
2:02:03:00
2._0 ".5t :00
7..'{_3:5S_0

MODE

LVLI4

LVLlt
• LV'I31

LVLH
LVLH
LVI../4-
LVI..H
LVLH
LVLIq
LvI..Yl
LVLH
LVI.M
LV1M
LVLH
LV1.H
LvI.H
LvIM
LVLH
LVta-I
LVI.a-I
LV1M
LVIM
LVLH
LVL..H
LVI.M
LVI..H
LVZH
LVI_t-I
LYLH
LV'I.H
LVI..!-I

P/YIR
('DEG)

30.0 I go.0
40.0 ! S0.0
30.0 1$0.0
15.0 130.0
53 lSO.O

-2Z0 I t0.0
-25.5 I$0.0

43.7 -._1.4
43."/ 51.4

-2.5.5 ! S0.0
43.7 -5 ! .4
43.7 51A

-253 I so.o
43.7 -51.4
43.7 51.4

•25.5 1_o.o
43.7 -51.4
25.5 0.0
23.0 0.0
25.0 0.0
29.0 0.0
33.0 0.0
3?.5 0.0

12.3.1 4._.4
-37.5 lgo.0
123.1 43.4"
37.5 0.0
O0 0.0

-10.0 0.o
-20.0 0.0
-30.0 0.0

TErI..mRLE.NG-IN

0.0 -- 01_0
0.0 0._
0.0 2,,10
0.0 3,00
o.o 4_',0
o.o 5.|0
0.0 1I30

37.6 20.00

-37.6 20.00
0.0 20.00

37.6 20._
-37.6 20.OO

0.0 20.03
37.6 20.0O

-37.6 20.03
0.0 21100

37.6 20.00
0.0 20._

6,0 11.50
0.0 3._

0.0 7._I.0
0.0 2.70
0.0 2..',0

-lbJ_ 2.4o
0.0 Z.¢.0
0.0 7.._
o.o Z'-t0
0.0 Z_
0.0 ' Lid
0.0 13.1
0.0 1-_

PHASE

DEFLOY

ON-

s'rATION
I

ON-
STATION

2

Tether Vent Computation

The ability to maintain an accurate state vector during TSS-1 operations depends upon
accurately modeling the external forces acting on the orbiter. An analytical approach for
determining the magnitude of the forces acting on the orbiter was formulated. The
technique utilizes characteristics of the tethered system and in brief, can be viewed as the
sum of the earth's gravitational force and the centrifugal force on the orbiter due to a
rotating system and can be computed by ;

2F = 3XMw

where

F = tether force in the radial direction

X = distance between the orbiter's center of mass and

the tether system center of mass

M = mass of the orbiter

w = angular velocity of the tether system center of mass
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A set of mass properties were assumed for the orbiter and the satellite. The orbiter's mass
and area were 6670.11 slugs and 2690 sq.ft., respectively. The satellite's mass was

assumed as 37.69 slugs. The tether was assumed to have length of 20 km when fully
deployed, its density was roughly 0.0001744 lb/ft. Given these initial conditions the
tethered system's center of mass (c.m.) is roughly 424 feet radially above the orbiter's

when the satellite is fully deployed. Using the analytical algorithm the magnitude of the
force acting on the orbiter was computed as,

F "rrnTEa= 11.37 lbf

Inherent in the MCC Trajectory applications exist the capability to solve for all of the
external forces acting on the orbiter as reflected in the tracking measurements. The forces
are computed in Shuttle body reference coordinates and utilizes the SB technique.

Selecting an arc of tracking measurements during the onstation phase of the mission, the
MCC solve-for force function computed the following forces,

F x = 4.43 lbs & F z = -9.90 Ibs

A limitation however, exist in the solve-for force tool. This important tool tries to solve for
a constant force which is not the case during satellite deployment and retrieval. These

phases of the TSS-1 profile are very dynamic with significant changes in the magnitude of
the tether forces coupled with excessive pulses from the Reaction Control System (RCS)
required to maintain prescribed attitudes. The RCS profile for the nominal mission profile
is shown in Fibre (1). It is not recommended that the solve for force technique be used
during these dynamic periods, but instead utilize the analytical technique.

Navigation Results (Nominal Flight Profile)

The following section highlights the results of an analysis which determines the impacts to
state vector accuracies when processing tracking measurements about the nominal TSS-1

mission profile. Of emphasis will be noted the impacts to navigation state vector accuracies
when the tether forces were and were not modeled. Table (2) provides the tether force
timeline used in the analysis.

Table 2

TETHER FORCE TIMELINE (Nominal Profile)

VEh"I"

1

2

3

5

6

7

t

9

10

l]

12

START END'rIME

01 .-00;00:00 01 .-00..35..59

01 .-00'.36:00 01 ..01:45..59

01 .-(3l:,l.&._ O1:02..38:29

01 ,_Y2:3$ :.30 O1:03:44".59

01 .'Q3:45:00 O|:04:55:29

01 ..04'_55'.30 01:16:29".59

01:16".30.'00 01 :I g:"/9:59

01:1 g ;,30:C0 01:20:14:59

01:20:15£0 01 ;Z2:_ :59

01:93.'04:00 07;0'2:07 _9

02:02:03,'00 0'2:_:4,4:29

07:03 ;4.,t:30 07:05:30:00

Fx__s rY j._,_ r'z_J._

-0__0 0-00 O,CO

0.10 0.00 -0.60

0.00 O.(X) -I ._

2.00 0.00 -3.90

• 3.60 0.00 -TAO

4.30 O.CO 4.99

3.60 O.r..,O -7,/,0

2.80 O.C,O .$,t_

I ._ _ . -2J_.:

0.70 O.CO -0.I0

0,00 O.O0 -I._0

0.00 000 4)..50
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Experience has shown that confidence in the knowledge of the orbiter's trajectory is
determined by the stability observed in the changes in semimajor axis. Figures (2) and (3)
provide plots of the magnitude of the change in semimajor axis denoted for each BB
solution considered in the set of tracking measurement when the tether forces were not and

were modeled, respectively. Taking note of the erratic signature displayed in Figure (2),
the changes in semimajor axis appear very unstable with magnitudes that vary between 0 ft

to 375 ft. Figure (3), on the other hand, shows that the magnitude of the changes in
semimajor axis can be reduced by modeling the tether forces. Changes in semimajor axis
observed in both plots during satellite deployment and retrieval are attributed to the
occurrence of high amounts of RCS activity and the many attitude maneuvers seen over
these periods.

To determine the error in each of the BB solution state vectors which were computed, a
comparison was made with the reference ephemeris defined by STOCS. The set of
ephemerides chosen for the compares were selected such that their timetags were within 30
seconds of the associating solution state vector.

A correlation between tether length, tension, attitude maneuvers, and the computed error in

semimajor axis is noted in Figure (4). The magnitude of the error in general was roughly
three to four times that of the center of gravity offset. This reinforces the fact that the BB

solution state vectors were those computed to reflect a state about the c.g. of the system.
Figure (5) shows the magnitudes of the error in semimajor axis resulting when the tether
forces were modeled. As can be readily noticed, a significant reduction is made in the
magnitudes of these errors.

Figure (6) through (11) show plots of the errors in the instantaneous position components
resulting when the tether forces were and were not modeled. Of important note that should
be mentioned when viewing these particular plots is that the c.g. offset manifests itself as
an error in radial position when the forces are not modeled. The average error in radial

position as shown in Figure (6) was roughly 471 ft, the c.g. offset at satellite full
deployment is 424 ft. Further, when the forces are not modeled an extreme degradation in
the knowledge of downtrack position is evident see (Figure (8)) and consequently, the
ability to comfortably support contingency operations suffer. Figures (12) and (13) show
the error seen in total position.

Ground State Vector Propagation Analysis

The MCC Ground Navigation section plays a very important role during the deorbit
timeframe. Flight rules which govern the navigation accuracies required for a safe deorbit
are strictly followed to assure crew safety. Current criteria dictates that the downtrack
position error seen in the onboard navigation state will not exceed 20 nautical miles at the
time of the deorbit burn. Acknowledging the fact that the TSS-1 mission is extremely
complex, contingency plans and navigation accuracies which support them were analyzed.

The de,orbit preparation timeframe starts approximately four revolutions prior to the deorbit
burn. A preliminary state vector is provided to the FDO for computations necessary for the
deorbit burn. A final state vector is delivered during the deorbit revolution. Given the
nature and complexity of the'TSS-1 mission, Ground Navigation flight controllers should
be prepared at all times to support a contingency deorbit.

To satisfy the requirements levied by the flight rule which is mentioned above, validity tests
were performed using the BB solution state vectors computed for each of the BB chains.
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For thetest,aselectedsetof solutionstatevectorsfromeachBB chainwerepropagatedfor
four revolutions and then comparedto a correspondingstatevectorat the endof the
propagationintervalasdefinedby STOCS. Modelingof thetetherforceswereperformed
in thepropagationintervalfor thosevectorscomputedusingtheforcesshowninTable(2).

Figure (14)providesplots of themagnitudeof theerrorin semimajoraxisresultingafter
thepropagationof thesolutionstatevectorscomputedfor thetwochains.Theanchortime
for the vectorsusedin this study are notedin Table(3). Theplot readily showsthe
significantreductionin themagnitudeof theerrorin semimajoraxiswhenthetetherforces
aremodeled.The magnitudeof theerror in semimajoraxisremainsaboutfour timesthe
c.g.offset for thosevectorsselectedduringsatellitedeployandonstationoperationswhen
theforcesarenotmodeled.The groundNavigation.sectionstrivesto minimizetheerrorin
semimajoraxiswhentaskedtoprovidestatevectorstoassistin trajectoryplanning.

Figure (15) showsthemagnitudeof the error in downtrackpositionresultingaftereach
statevector propagations. As is expected,a correlationis seenbetweenthe error in
semimajoraxis and the downtrackposition error for the two chains. Although the20
nauticalmile downtrackerror criteria is notviolatedfor eithercase,thecasein whichthe
tetherforcesweremodeledprovidestheaccuraciesinbothsenimajoraxisanadowntrack
positionandthusmaybeconfidentlyusedfor trajectoryplan.,!rig.

Table(3)
VECTORPROPAGATIONTIMES

PROP NO.

1

2

3

4

5

6

7

$

9

10

11

12

13

MET

0_.33:00

02.'01.'00

03"37.'t10

02:14:.20

06".51.-00

0g:27:40

113:.03:40

11".39.'00

13:15.'00

15:15"..211

I t:os.-oo

19:41:4o

22:07:40

Tether Cut Analysis

Given the complexity and technical unknowns associated with the TSS-I mission, off-
nominal mission scenarios needed to be analyzed. The scenario which will be discussed in

this section addresses the ability of the Navigation section to successfully provide accurate
solution state vectors in the event the tethered is cut voluntarily or involuntarily. The
physical properties of the tethered system concludes that when the tether is cut, a decrease
in orbital energy results in the Shuttle's trajectory. The following analysis addresses the
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amount of time required to determine the new trajectory as reflected in the tracking
measurements. The analysis includes discussions of the results of a tether cut at 5, 10, 15,
and 20 km. The occurrence of the tether cuts are depicted in Figure (16).

The analysis was performed with the aid of tracking measurements computed using both
STDS and the Houston Operations Predictor Estimator (HOPE) programs. STDS was
used for the creation of the tracking measurements which included tether induced

perturbations prior to the tether cut. HOPE was used to create the tracking measurements
after the tether cut and utilized a state vector as defined by STOCS which coincided with the
time of the tether cut. The tracking measurements were merged to create one master

tracking data file and were processed in the BB mode with and without the tether forces

being modeled.

In each of the cases analyzed, the stop time of the modeled tether force coincided with the
time of the tether cut. The assumption used in this scenario was that the tether forces' stop
time modeled in the Ground Navigation software could be readily modified to reflect the
actual time of the cut during real-time operations. This assumption was also adopted when

assessing the Onboard Navigation system performance. However, the onboard tether force
will not likely be zeroed at the exact time of the tether cut due a combination of ground

flight controller and crew interventions necessary in accomplishing this task. Each case
was therefore analyzed to determine what were the net effects if the tether forces were never
zeroed out and represents a three sigmaprocedural scenario.

Basic orbit mechanics dictates that the position at which the tether cut occurs will become

the new apogee for the Shuttle's orbit. The perigee will be defined 180 degrees away from
the tether cut, see Figure (17). The tether cut introduces an instantaneous removal of the
tether tension. This analysis will show that when the tether forces are not modeled in the

navigation software, the instantaneous removal of tether tension appears as a semimajor
axis change in the solution state equal to roughly four times the e.g. offset distance. The

analysis will also show that when the tether forces are modeled in the timeframe prior to the
tether cut and properly zeroed out that a smooth transition to the new orbit can be achieved.

Trajectory Analysis (Tether Cut)

The results of BB processing for the error in semimajor axis are shown in Figure (18)

through (21). The error is computed when a comparison is made between each BB
solution and a chosen ephemeris vector. For the case in which tether forces were modeled,
the forces were modeled only at the times prior to the tether cut. The plots readily show
that a smooth transition to the new orbit is achieved upon accurately modeling the tether

forces prior to the cut. For the cases in which the forces were not modeled the resulting
error in semimajor axis is directly proportional to the length at which the tether is cut. As is
shown when the tether length is 20 km, a large error re3ults for the case in which the forces
were modeled. The error can be attributed not only to the inaccuracies in the BB solution

state vectors computed, but also the impact of high RCS activity as is shown in Figure (1).

In determining whether the Flight Rule which governs the navigation state vector accuracies
in the event of a Loss of Communication between the ground and the Shuttle, a two

revolution navigation accuracy analysis was performed. Each case was analyzed to
determine when the 20,000 ft predicted downtrack position error criteria was violated.

For the chains in which the tether forces were not modeled the criteria was violated in a
very short time. In the case at which the cut occurred at 20 kin, the violation occurred
within one orbital revolution. Whereas for the 5 km case, the violation was delayed for just
over two revolutions. When however, the tether forces were modeled the magnitude of the
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downtrackerror prediction in two revolutionresultingafterthecut wasminimized. In
thesecases,noupdatewould berequiredto thereferencegroundephemerisfollowingthe
tethercut given thesmoothtransitionto theneworbit asdisplayedinFigure(22)through
(25).

Eachof theBB chainsfor thetetherlengthanalyzedwerecomparedagainsttruthvectorsas
definedby STOCSandHOPEduringpre-andposttethercutphases,respectively.Figures
(26) through(29) showthe error in semimajoraxis resultingaftereachvectorcompare.
The statisticsshowthemagnitudeof thetheerrorin eachsolutionwhencomparedto the
orbiter'struepositionandalsothetimerequiredto recoveragroundsolutionof thequality
necessaryto supporttrajectoryplanning. Forthecasesin whichthetetherforceswerenot
modeled prior to thecut, the solutionconvergedwithin arev afterthecut. For thefour
caseswhich acknowledgedthe tetherforces,thesolutionremainsverycloseto thetruth
andno recoverytimeis necessary.Theerrorin totalpositionfor thethechainsareshown
in Figures(30) through(33).

Conclusions

The TSS-1 mission will indeed be a challenging undertaking for the STS program. The
dynamics which are expected during tethered operations will require that new real-time
navigation flight procedures be developed to meet all mission objectives and to assure crew
safety. The results have shown that with proper modeling of the tether forces acting on the
orbiter, accurate prediction of the mae state of the orbiter can be maintained under both
nominal and off-nominal flight conditions. This will not be a trivial task and will require
that pertinent systems information be made readily available to the navigation team during
TSS-1 operations. Precise coordination between ground flight controllers and the crew

must be maintained to properly monitor the true state of the orbiter. This can only be
accomplished through extensive training in an integrated MCC simulation environment.
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NEW QUESTS FOR BETTER ATTITUDES

Malcolm D. Shuster

The Johns Hopkins University, Applied Physics Laboratory,

Laurel, Maryland 20723-6099

ABSTRACT

During the past few years considerable insight has been gained into the QUEST

algorithm both as a maximum-likelihood estimator and as a Kalman filter/smoother

for systems devoid of dynamical noise. This conference contribution describes the

new algorithms and software and makes analytic comparisons with the more conven-

tional attitude Kalman filter. We also describe how they may be accommodated to

noisy dynamical systems.

Introduction: the QUEST Algorithm

The QUEST algorithm is based on a least-square problem first proposed in 1965 by Grace

Wahba, then a graduate student in Statistics at George Washington University and working

during that summer for IBM in Gaithersberg, Maryland. The problem, which appeared in

SIAMReview [ 1 ], was, in fact, Wahba's first publication. In it she posed the problem of finding
the attitude which minimizes the loss function

1
L(A) = _ E al I'_Vi - A _ril_ ' (1)

i=1

where X_¢i, i = 1, ..., n, are a set of unit-vector observations in the spacecraft-fixed reference

frame, and Vi, i = 1, ..., n, are the representations of the same unit vectors with respect

to the primary reference frame (the frame to which the attitude is referred). The a i are a set

of non-negative weights. Provided that at least two of the observation vectors are not parallel

(or anti-parallel) and the corresponding weights are positive, a unique minimizing attitude

matrix will always exist. Dozens of solutions have been proposed to find this attitude matrix,

of which the fastest currently and most frequently used is the QUEST algorithm [ 2 ], based on

the q-algorithm of Davenport [3 ].
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To solve for the optimal attitude we first write equation (1) in the form

n

L(A) = _a i - Zai_ri" A¢i, (2)
i=1 i=1

= a, - g(A). (3)
i----1

The gain function, g(A), may be further manipulated to give

g(A) = tr(BTA), (4)

where B, the attitude profile matrix, is given by

71

B = _ a i _iVi vTi . (5)
i=1

The minimization of L(A) is equivalent to the maximization of g(A).

We now note that g(A) is linear in A. Nonetheless, the minimization of g(A) is not simple
because the 3 x 3 matrix A is subject to six nonlinear constraints. Thus, the minimization

of g(A) over A is not necessarily simple) The attitude matrix, however, can be written as a
quadratic function of the quaternion,

[q]Ft= [ql, q2, q3, q4]T = q4 ' (6)

namely,

where

Defining further the quantities

A(_)= (q_- q "q)I3×a Jr 2qq T + 2q4 [[q]], (7)

I 0 q3 --q2 1
[[q]]= -q3 0 ql • (8)

q2 -ql 0

S=B+B T, s=trB, [[Z]]=B-B T, (9)

the gain function may be rewritten in terms of the quaternion as

g(q) =_g(A(q)) = FtTK Ft, (10)

where

s- ,I3×3 z] (11)K = Z T s "

1Not all students of the Wahba problem will agree, as shown by Markley [4].
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The maximization of this gain function, subject to the constraint that the quaternion have
unit norm, leads to an eigenvalue equation for q*, the optimal quaternion, which is [2, 3 ]

Kq* = '_maxq*, (12)

where *_max is the largest eigenvalue of K. Thus, the optimal quaternion may be found by

solving this 4 x 4 eigenvalue problem and choosing the eigenvector with the largest eigenvalue.
This is Davenport's q-method, which was applied in this form to the HEAO mission [5 ].

The QUEST algorithm, a very fast implementation of Davenport's q-method which avoids

the complete solution of the eigenvalue problem, is formulated in terms of the Gibbs vector,

Y,
Y =- q/q4" (13)

In terms of the Gibbs vector the optimal attitude may be written as

Y* = [("_max q- 8)/-3>(3- S] -1 Z, (14)

and the optimal quaternion then reconstructed as

1 [Y*]. (15)q* - _/1 + IY*l2

Key to the QUEST algorithm is the fact that a very good first approximation of the optimal

attitude (accurate to 0(14), where a is the standard deviation of a typical sensor error) may

be obtained by substituting A(,_)_xfor Am_x, with

n

 (oL:_ a,. (16)
i=1

It is easy to show that
_m_x = A(n_)x(1 + 0(12)). (17)

The further refinement of Areax is described in detail in [ 2 ]. This amounts to solving the equa-
tion

'_max _- 8 21- Z T [('_max -{- S)/.3×3 -- S] -1 Z, (lS)

by the Newton-Raphson method using A(m°_)_as a starting value.
If the measurements are assumed to be corrupted solely by Gaussian random errors of the

form,

x_¢ i = A _r i + A_V i ,

where the sensor error AVV i satisfies

E{AW 3 = o,

2[_r3×3 - (Ag_) (A9_)T]E{_:__W,_}=o_

(19)

(20)

(21)

and the weights ai, i = 1, ..., n, are chosen so that

C

ai= ---g
(r i

(22)
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for some constant c, then Reference [2] shows that the attitudecovariance matrix is given by

i=1

where

(_¢V'i)true -- Atrue "Vi" (24)

In actual computation we generally substitute X_q"i for (_Ari)tr,e , since the latter value is not
known, in general. The attitude covariance matrix is defined here as

Poe = Cov (A0), (25)

where A0, the attitude error, is given by

A* TAtrue _ 13x3 + [[A0]], (26)

and Cov denotes the covariance. Thus, the QUEST algorithm gives a fast direct method for

constructing the optimal attitude. The algorithm has other valuable properties as well, which
are discussed in [ 2 ].

The Attitude Kalman Filter for the QUEST Model

QUEST is a batch estimator taking as input a collection of simultaneously measured unit

vectors. When the data is not simultaneous and we wish to use data at widely different times,

the algorithm of choice has been the Kalman filter. In the present section we present the

KaIman filter for the measurement model of equations (19)-(21).

Since the QUEST algorithm does not treat dynamical noise (the measurements being all

simultaneous, this would hardIy be relevant), we examine the Kalman filter for a system with-

out dynamical noise, that is, a system for which the temporal development of the attitude is
described by

Ak = _k_lAk_l, (27)

where the transition matrices, ,I,k, k = 0, ..., N - 1, is known perfectly. In general, the
subscript k will indicate the time, and the subscript i will indicate the sensor. For such a system
the prediction of the attitude matrix must have the form

A_lk_ 1 = ffk_lA_c_llk_l , (28)

where A*k_]lk_ 1 is the estimate of the attitude matrix at time tk_ 1 based on all the measure-

ments up to that time inclusively, and A_lk_ 1 is the estimate of the attitude matrix at time t k

based on the same data. Since dynamical noise is absent, the prediction of the attitude covari-
ance matrix is given by

Pklk-1 = _-aPk-llk-a_I'T-1 • (29)

and, since rio confusion can result, we have dropped the subscript 00 to make the notation less
cumbersome.
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For updates the calculation is more involved. Since the attitude has only three free pa-
rameters while the attitude matrix has nine, we do not update the attitude matrix directly but

compute instead the updated value of _k, the incremental rotation vector, which is defined by

Ak = e[[¢k t] A_lk_l ' (30)

,_ A_I__ 1 + [[_k]] A_lk-,, (31)

so that by definition

_lk_ 1 = O. (32)

Then we can write the linearized measurement as

Q - "vVk- W lk-1, (33)

where

Wklk_ 1 = Aklk_lV k.

Combining equations (31)-(34) yields

(34)

(k = Hkf, k + vk, (35)

where

Hk = -[[ X?Vklk-1 ]]" (36)

The measurement noise of our linearized measurement, v k, is assumed to be Gaussian and

zero-mean. Its covariance matrix can have only rank 2 since unit-vector measurements have

only two degrees of freedom. However, it can be shown that the true covariance matrix of v k

can be replaced by
Rk = ak/3 xa, (37)

which is obviously of rank 3. This substitution leads to the same estimates and covariance

matrices as the form given by equation (2i) [6]. The reason for this is that the additional

noise which makes the covariance matrix of rank 3 is along the direction of VCk, tO which the

attitude is not sensitive. It can be seen from equation (36) that H k annihilates that component

from _r k.

The Kalman filter update equations now become

Bk T (38)= H k Pklk_lHk + Rk,

Kk T -1 (39)= Pklk_lHk Bk

= gkw , (40)

Pklk = (I3x3 -- KkHk)Pklk-1 (41)

= (Iax3 - I(kHk)Phlk-l(laxa - KkHk) T + IfkRkHk" (42)

The Kalman filter equations, (28)through (42), can treat non-simultaneous data but are con-

siderably more complicated than the QUEST algorithm for simultaneous data. It is natural
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ask, therefore, whether the QUEST equations can be manipulated to remove the restriction to

simultaneous data. The answer is affirmative. In fact, the Wahba problem was applied to non-

simultaneous quite some time ago [ 5 ] but in a batch framework, not in a sequential framework
like the Kalman filter.

The Sequentialization of QUEST: Filter QUEST

Suppose that we have a set of simultaneous measurements at time tk_ 1 which we can denote
A

by Wi,k_l, i = 1, ..., n, and let us denote the optimal attitude at time tk_ 1 computed using

the QUEST algorithm by A__llk_ 1. Recalling equation (27), the optimal value of A k based

on the data at time tk_ 1 is obtained by minimizing

1 'tie" -- 1

Lk-l(Ak) = _ E ai,k-1 ['¢Vi,_-I -- _-k!lAk Vi,k-ll 2 , (43)
i=1

where the additional subscript on 1,(A) indicates the time of the data. Since _k is orthogonal,
this is clearly the same as finding the value of A k which minimizes

_ : r_k--i 121 l¢_k_lvi_ri,k_ 1 -- Ak v_ri,k_lL_ l(ak)= _ E ai, k-1
i=1

(44)

that is, by replacing _i,k-1 by i_k_lV_i,k_l , or equivalently, noting equation (5), by replacing

rlk-- 1

Bk-ll k-1 _ E ai, k-1 viii,k-1 v_rTi,k_l (45)
i-1

by
flk--I

BkJk-1 = E ai,k-1 _k-lWi,k 1 ,_rT- i,k-1
i-----1

Thus, for the filter version of QUF_.ST, the prediction step becomes simply [7]

(46)

Bklk-1 = (I)k-1 Bk-llk_ 1 • (47)

We may, in fact, drop the distinction between the indices i and k and treat each unit vector has

having a distinct time tk, reference vector _/'k and weight a k associated with it. If two vector

measurements VCk+_ and "v_¢k are simultaneous, then t1,+1 = tk and _k = Iaxa-
For the update step of Filter QUEST, we note that when we increase the number of mea-

^ ^ Tsurements in the measurement set of equation (5) we simply add a term, akWkVk, tO B. Thus,

the update step in terms of the attitude profile matrix is

Bk[ k "- Bkl__ 1 + akV_k'Q T , (48)

The QUEST algorithm requires also that we know the value of A(°)xk separately. This is given
by

'_(m°_)xk= A(m°_xk-I+ ak. (49)
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Equations (47)-(49) are clearly much simpler than the corresponding Kalman filter equa-
tions (28)-(42).

The covarianee matrix can be computed sequentially also by first computing the attitude

information matrix, F = p-1. The i:elevant equations are

_T
Fklk-1 -_- i_k-lFk-llk-1 k-1

1

These can be computed likewise [7,8] from .... ....

F = tr(A*BT)Iax3 _" A*B T",

(5O)

(51)

(52)

without the need to have a separate recursion relation for F. Equation (52), in fact, is very

important because it can be solved for B to yield

B (_tr!F)I3x 3 F) A*. (53)

Thus, given initial values, A*olo and Polo, the initial value of the attitude profile matrix, Bol o can

be computed from equation (53). This last fact makes the analogy of Filter QUEST with the

Kalman filter complete. In fact, since it can be shown that QUEST is a maximum-likelihood

estimator for Gaussian errors [7], the Kalman filter and Filter QUEST will yield identical

attitude estimates for the attitude system considered above.
It is well to note that the Filter QUEST is an information filter rather than a covariance

filter. This is made clear by the fact that B_l x is a meaningful quantity even though the attitude
cannot be calculated from a single measurement.

While the prediction and update equations of Filter QUEST are simple, it is also true that

the need to apply the part of QUESTwhich computes the optimal attitude and covariance ma-

trix from the attitude profile matrix is an additional computational burden. The real advantage

of Filter QUEST comes when one does not require an attitude solution at every measurement

update. In this case, the efficiency of Filter QUEST relative to the Kalman filter is greatly
enhanced.

The Treatment of Noisy Processes

In general, attitude systems are subject to random torques, orthe dynamical equations are

replaced by the gyro equations [ 9 ] so that the gyro measurement noise becomes process noise.

In the Kalman filter formulation, this extra compl{catlon results in the prediction equation for

the attitude being replaced by " ' =

pklk_l = _k_lPk_llk_l_bk_ 1T -Jr Qk-1 • (54)

where Qk-1 is the covariance of the accumulated process noise from time tk_ 1 tO time t k.
Possibly also, the state vector must be augmented to include the state of the Markov process

driving the gyro errors [ 9 ].
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Such an enhancement is not possible in Filter QUEST since there is no simple way of adding

process noise to B. One could, of course, compute Pklk-1 after every prediction step of Filter

QUEST, add the process noise covariance to Pklk-1, and then use equation (53) to compute

a new Bklk_ 1. This would be extremely burdensome and destroy whatever computational ad-
vantage Filter QUEST offered.

An approximate way to simulate the treatment of process noise is to modify Filter QUEST

so that it becomes a fading memory filter. Thus, we replace the prediction step in QUEST by

Bklk_ 1 _ Otk_k_ 1 Bk-l[k-1 , (55)

where a k is a number between zero and one, and which is also a function of k. Clearly, if a
is chosen to be zero, then Filter QUEST will have no memory at all. If the data consists of a

sequence of frames each containing several simultaneous vector measurements, then choosing

c% = 0 at the end of each frame and a k = 1 otherwise will produce a sequence of single-frame

QUEST estimates. Choosing a k = 1 for all k corresponds to infinite memory, which would be

appropriate for a genuinely noiseless system.

How should one choose a? Clearly, if the accumulated process noise between measure-

ments is generally much smaller than the measurement noise, then it should be expected that

Filter QUEST properly adjusted will average several measurements and obtain a much more

accurate result than the single-frame estimate. If a k is adjusted to be too small, then Filter

QUEST will take insufficient advantage of the data and the result will be less accurate. Like-

wise, if a k is too large, then the Filter will overweight data which has become less accurate due

to the accumulation of process noise, and the solution will be less accurate again. Thus, there

is generally an optimal choice for a k.
Let us consider the case where the process noise is equivalent to

A k = e[[Wk-allCk_lAk_ 1 , (56)

where w k is a white sequence with covariance qI a xa. Such a model is characteristic of an ideal-

ized laser gyro and would be appropriate if the dynamical information were coming from laser-
gyro measurements. Let us consider also that the spacecraft is equipped with three attitude

sensors which at each time t k sense simultaneously unit vectors along each of the coordinate

axes, each with an accuracy of a. In such a case, clearly, we would choose a k = 1 between

the unit-vector measurements in each frame and a k = a after the last measurement in each

frame. In this case, an analytical solution is possible for the covariance matrix of the QUEST

filter, which in the limit that an infinite number of measurements have been processed turns
out to be

pQF QF (57)klk -- Pklk f3x3,

with

and

This function is a minimum for

QF a211 -a 2 a2 ]Pklk = "_ _ + -x 1---a 2 ' (58)

x - a 2/q. (59)

x + 1- v/i + 2z (60)
O_°pt -" X
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Figure 1. Filter QUEST Covartance as a

Function of the Fading Memory Factor for 02 -_ q

If we choose values such as

a=ldeg, q=(.Sdeg) 2, (61)

then a plot of ,_qr will look like Figure 1, which shows a broad minimum at a = 0.5 and ark[k

minimum variance of P_L_ = (.5 deg) 2. This should be compared with the single-frame result
which is

0-2

p_ingle-frame = __ = (.707 deg) 2 (62)2

The Filter QUEST solution is not a very large improvement over the single frame solution but

not inconsistent with the relatively large gyro noise we have chosen compared to the vector-
sensor noise.

The general formula for the minimum Filter QUEST variance for this example as a function

of 0- and q is

qr a 2 -1 + v/_ + 2z (63)= T
'T'hus_

as expected, and

QF 0"2 psinsile- frame
Pmi. klk _ "_" = as z _ 0, (64)

QF 0"2 V/_Pminklk _ "_ as z _ oo. (65)
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Figure 2. Filter QUEST Covariance as a
Function of the Fading Memory Factor for (7_ >> q

Equation (65) shows that for x very large, the effective number of previous measurements

which Filter QUEST is averaging to reduce the error is

N,f r = x/2. (66)

Note that the dependence of _opt on the measurements is in the limiting cases

mopt_z as z---+0, (67)

and

aopt"l-_ as z_oo. (68)

Thus, aop t will generally be extremely close to unity for cases where we would generally want
to use a filter. For example, if we choose instead of the previous case more physical values

such as cr = 1 deg, q = (1 arc rain) 2, then c%p_ = .976 and i%Ql_= (.11 deg) 2, The standard

deviation is, thus, almost seven times smaller than the single-frame value. The dependence of

the variance on the fading-memory parameter for this case is shown in Figure 2.
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Smoother QUEST

The Kalman filter has the disadvantage that only anterior data is used in the estimate. Thus,

posterior data, which is equally accurate, is not considered, thereby increasing the covariance

by at least a factor of 2 over its achievable value. Also, for early estimates, less data is used

leading to a less accurate result than for later estimates.
A Kalman filter/smoother uses both the data which precedes the time of the estimate and

the data which follows the time of the estimate. While such an estimator is more accurate, it

has the disadvantage that it cannot function in real-time. Thus, a smoother is generally more

applicable to background processing on the ground rather than real-time processing on the

spacecraft.
The QUEST algorithm also admits a smoother implementation. Suppose we are given mea-

surements _r k, k = 1,... ,N. Then the smoothed attitude profile matrix B_l N at time t k,

k = 0,..., N, is given by

k-I

: o (no,) o,o
i=0

k-1

+ Z ...
i=1

+ ak "V_rk_rT

N

+ ... W,;'T, (69)
i=k+l

The first term in this equation is the contribution of the a priori estimate of the attitude. If

the smoother were implemented in segments, Bol o would be the attitude profile matrix for the

final estimate of the previous segment. The second term gives the predicted contributions of

the measurements preceding the current measurement. The third term is the current mea-
surement. The first three terms thus constitute the usual Filter QUEST expression for the

attitude profile matrix. The fourth term gives the contribution from the measurements which
come after the time of the estimate. The factors of the transition matrices transform the mea-

surements to the body frame at time t k and the factors of atk-q downgrade the data to reflect

the ravages of process noise. Equation (70) may be rewritten as

Bkl N = Bkl k + Dj, , k = O, ... , N, (70)

where Bkl k is the "filtered" attitude profile matrix, which satisfies the previous Filter QUEST

(forward) recursion relations, and is given by the first three lines of equation (69). D k is the
contribution of the posterior measurements, which is given by the last line of equation (68).

By inspection, we see that D k satisfies a backward recursion relation,

D N = 0, (71)

Dk_l = a_-_l_I [D k + ak,_r/c._rT] , (72)

in complete analogy to the usual Rauch-Tung-Striebel Kalman filter/smoother [ 10]. The in-

formation matrix again is given by equation (52) but with Bkl N replacing Bki k . Since ¢k in
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the present application is orthogonal, the inverse is given by the transpose. Thus, the set of

smoothed attitude estimates for an interval of data is obtained with only twice the computa-
tional burden of the calculation of the filtered estimates. An obvious drawback, however, is
that all of the data, filtered attitude profiles matrices, and attitude transition matrices must be

stored. Thus, it is beneficial to process overlapping segments (but whose data length is much

greater than Neff) in order to keep storage requirements for the processing within reason.

Discussion

Despite its simplicity and obvious power in the above example, Filter QUEST has its draw-

backs. First, it only estimates attitude. Thus, in a system in which angular velocity or gyro

biases must also be estimated, Filter QUESTwill not be sufficient. Also, for systems with poor

geometries, say only a single measurement, Filter QUEST's approximation of a single fading-

memory factor may be inadequate. Also, Filter QUEST suffers from the short-comings of
QUEST, which, if viewed as a maximum-likelihood estimator, effectively assumes the mea-

surement error model given by equations (19)-(21). This is not always the case. However, it is
frequently so, and for the most part this model is reasonable, and Filter QUEST offers a useful

if limited alternative to the full Kalman filter. In one recent example Filter QUEST has been

applied to the COBE mission with encouraging, if not spectacular, results [ 11 ].
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ABSTRACT

A gyro-based filter variation on the standard QUEST attitude determination

algorithm is applied to the Cosmic Background Explorer (COBE). Filter

QUEST is found to be three times as fast as the batch estimator and slightly

more accurate than regular QUEST. Perhaps more important than its speed

or accuracy is the fact that Filter QUEST can provide real-time attitude solu-

tions when regular QUEST cannot due to lack of observability. Filter QUEST

is also easy to use and adjust for the proper memory length. Suitable applica-

tions for Filter QUEST include coarse and real-time attitude determination.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space
Flight Center (GSFC), Greenbelt, Maryland, Contract NAS 5-31500.
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1. INTRODUCTION

Filter QUEST is a new version of the familiar QUEST attitude determination software. Be-

cause it makes use of gyro data, it promises to combine the speed of QUEST with the accuracy

of gyro-based estimators. Just how fast and how accurate is seen from experience with

Cosmic Background Explorer (COBE) data.

2. BACKGROUND ON QUEST

QUEST is Shuster's implementation of the Davenport q-algorithm for attitude determina-

tion (Reference 1). Since its introduction in 1978, it has been a standard part of the attitude

ground support systems built for three-axis spacecraft at the NASA Goddard Space Flight

Center Right Dynamics Facility. Explanations of the algorithm and its implementation are
available elsewhere (References 2, 3, and 4), but a few remarks about QUEST that are rele-

vant to the following discussion are included for convenience.

First, QUEST uses only unit vector observations expressed in body coordinates. These are

denoted here by g,i, where i indicates the particular observation. The corresponding refer-

ence vectors in inertial coordinates are _'i • Each observation is also given a scalar weight a,,

which is normalized so that the sum over all observations equals one.

N

ai = 1 (1)
i=l

Second, an intermediate quantity called the attitude profile, or "'B-matrix,'" is computed as
follows:

B

N

Z ^ ^_r (2)= ai vi w
i=l

Several secondary quantities are also defined:

g E

B2.3 - B32

B31 - B_3

B12 - Bzl

(3)

S ==B+B T (4)
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a _ trace[B] (5)

Third, the attitude quaternion q is then the solution to the eigenvalue equation

Kq = 2q (6)

where the matrix is constructed from those secondary quantities:

K (S - (7I) z
z T (7

(7)

3. FILTER QUEST

Filter QUEST is a natural generalization of the QUEST attitude determination algorithm

(References 5 and 6). QUEST is limited to using "single-frame" observations from the same

time or a constant attitude. Filter QUEST, however, can accept observations from different

times or attitudes so long as it has the incremental rotation angle between those times. This

information typically comes from gyros. In the past, systems have been built that propagate

the unit vector observations to a common time before providing them to QUEST for "batch"
processing. Filter QUEST differs in that it handles that preprocessing internally. Filter

QUEST also differs in that it is a sequential estimator with a simple "fading" memory rather

than a batch estimator. In Filter QUEST, the B-matrix is corrected for spacecraft rotation

between observation times ti and ti.l. Here Bi/j denotes the value of the B-matrix at time ti

based on observations up to and including those at time tj:

Bi/i-i -- aq_ (ti, ti-1) Bi-l/i-i (8)

The memory length parameter a is a number between zero and one. a equal to one implies

infinite memory, and a equal to zero produces the standard QUEST algorithm. _I_is the

attitude propagation matrix computed from the angular increment vector 0 for the time in-

terval (ti, ti-1). It is given by the expression

(ti,ti-1) = COS0 I + (1 - COS0) 00 T - sin 0 [0x] (9)

where 0 is the magnitude and _} is the direction of

= ob
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and

^

led I A
- 03 02

= 0 0
^ ^ -- 1

L- 02 01

At each observation time. the B-matrix is updated using the new pair of vectors ¢¢i and x_,'i

Bi/i = Bi/i-i + ai vi w (lO)

Attitude is computed at selected times using the standard QUEST algorithm.

There are three reasons for interest in Filter QUEST. First, because it uses gyro data, it can

provide more accurate real-time attitude solutions than regular QUEST. It can also extend

observability into periods such as Orbit night, when single-frame methods may be useless.

Second, because QUEST is fast, it is hoped that Filter QUEST will provide accuracies ap-

proaching those of the batch estimator with less CPU time. This is useful for producing

24-hour attitude histories, as in definitive processing. Third, the simplicity and familiarity of

Filter QUEST make it a suitable "training" filter. Tuning is accomplished by adjusting the

single parameter a, which can always be set equal to zero to return to the original QUEST.

Because QUEST is so well known, any improvement is also likely to be accepted.

To evaluate its performance with real data, Filter QUEST was built into the Coarse Attitude

Determination Subsystem (CADS) of the Cosmic Background Explorer (COBE) Flight

Dynamics Support System (FDSS), where it replaced regular QUEST. Tests were then made

to see how much attitude error could be eliminated by increasing a and to determine an opti-

mal value for a that would minimize error while avoiding long-term divergence. For these

tests, the Fine Attitude Determination Subsystem (FADS) solution computed using Diffuse

Infrared Background Experiment (DIRBE) star observations was used as a reference. FADS

is a batch estimator that uses gyro data to provide the most accurate COBE attitude solutions.

The Filter QUEST and these DIRBE batch solutions were then compared in the Quality As-

surance (QA) subsystem, where the plots and statistics on their differences were computed.

Finally, timing comparisons were made for the batch, regular QUEST, and Filter QUEST
estimators.

4. THE EFFECT OF MEMORY LENGTH

The length of the fading memory is controlled by the parameter a, which determines the

effect of the current observation on the current attitude estimate. Although a is constant, the
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"effective" weight, which is the ratio of the current observation weight to the total weight, is

not. If all observation types have the same weight O, the sum of these weights at time ti is

i-1 a(i - a i) (11)
W i = a _" a j =

1-a
j=O

The ratio of the current weight to the total weight is

a 1 -a (12)I>-- = _l-a
Wi (1 - a i)

This number decreases from one and converges to (! - a). Thus, the fading memory filter is

more responsive to early observations than later ones. This is particularly so a is set high and

there is no a priori solution. In this case, the solution can lock up quickly based on a few
inaccurate measurements and then take a very long time to converge to the correct attitude.

The error in a Filter QUEST solution is taken to be the difference between that solution and a

DIRBE batch solution. For theshort timespan shown in Figure 1, the error is random with

amplitude consistent with the 0.5 degree Sun sensor resolution. The size of the error corre-
sponds to the spread of the difference curve or the root of the mean squared (rms) difference.
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Figure 1. Filter QUEST Solution Error
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As the memory length parameter a increases from zero to one, the rms difference decreases.

as shown in Figure 2. The rms difference does not go to zero because the observation errors

are not completely random.
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Figure 2. Error Standard Deviation as a Function of Memory Length

It would seem then that the memory length should be made as large as possible. The adverse

effect of doing so becomes apparent over longer timespans. As shown in Figure 3, the differ-

ence can increase with time and exceed the one degree (3a) COBE accuracy goal. Figure 4

gives a plot of the rms differences for full-orbit (100-minute) solutions as a function of a.

There is no sharply defined value of a that minimizes the error. Any value between 0.90 and

0.99 is suitable. The determination of this value is sometimes called "tuning." In practice, the

true attitude is not apt to be known, and tuning must be done by examining howwell the ob-

servations are fit by the attitude solution. QUEST and Filter QUEST provide such a figure of

merit in the output "RESIDU" 0, which equals one minus the "overlap eigenvalue" 2 (Ref-

erence 7). When all the observations fit the attitude solution, RESIDU equals zero.

0 = 1 - (13)

RESIDU is plotted in Figure 5 for the solution of Figure 3. Just as the growing difference

curve indicates that a is set too high, the growth of RESIDU says the same thing without the

need for an absolute attitude reference. Figure 6 gives a plot of the maximum RESIDU

values for full-orbit solutions as a function of a corresponding to the rms differences pro-

vided by Figure 4. Again, there is no clearly optimal value for a. Any value between 0.90 and

0.99 will do. Alternatively, a can be chosen such that RESIDU is as large as possible but does

not grow over time.

144



"0

la,l

W

0

i
,E

u

I 500o]
J

1 40001

1 3000 i

I 20001

I 1000

1 . ,2,000

0 8000

9 70,)_?,

'9 6000

0 5000

0 4000

') 3,900

Figure 3.

o{= t.O

/

/
/

f
J

/'

/

/

/
/ •

/

/

, /

J

')9. 30.00 10.05. 20 19.36.4,9 ll . 10.00

0') . 4 F_ . 4 C, l O. __,;3 02 10. 53. Z ') 1 I . 26. 40

Time (HH.MM.SS)

Divergence of Filter QUEST Solution Over a Full Orbit

ORIGINAL PAGE IS

OF POOR QUALITY

145



¢J

_J
"O

UJ

oJ
b.
¢0

O"
U_

r-
03

O

Figure 4.

(100 Minutes)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Memory Length Parameter

Root Mean Square Error as a Function of Memory Length

.146



:D
r_
i

09
UJ
rr

Figure 5.

c_= 1.0

Time (HH.MM.SS)

RESIDU as an Indicator of Divergence

ORIGINAL PAGE IS

OF POOR QUALITY

147



o
o

o

X

O

re"

I O0

6O

4O

2O

Figure 6.

(100 Minutes)

0.9 0.91 0,920.930,940,950,960.970.980.99

Memory Length Parameter

RESIDU as a Function of Memory Length

5. SPEED AND ACCURACY COMPARISONS

Since the batch estimator and QUEST represent the current COBE capabilities, they are
used as standards against which Filter QUEST is measured. For comparison, all three estima-

tors are applied to a full orbit (100 minutes) of data. The memory length parameter a is set

to 0.98 to keep the attitude from diverging over this timespan. As before, the reference is a

batch solution computed using DIRBE star data. The batch error plotted here is the differ-
ence between this reference and a batch solution obtained from Sun and Earth sensor data

alone.

The rms errors of the three solutions are shown in Figure 7. For this comparison, gyro biases
were first solved for in the batch estimator, and the corrections were made in the Data

Adjuster (DA) subsystem. This improved the Filter QUEST solution accuracy as well as that

of the batch estimator. In spite of having gyro data, Filter QUEST had an rms error only

14 percent smaller than that of regular QUEST, and still far greater than that of the batch

solution. The reason for this small improvement is that like any sequential estimator, Filter

QUEST cannot look ahead of the current solution time. While the batch estimator effectively
has infinite memory and thus can average out orbital and higher frequency errors, Filter

QUEST cannot set a to one without diverging. Unless observation errors are really random,
or are much smaller than the propagation error, no filter compares favorably with a batch

estimator in accuracy. Unfortunately, all nonrandom errors seem not to have been elimi-
nated from the COBE observations.

The speed of each estimator in producing these solutions is plotted in Figure 8. These num-

bers are for the Flight Dynamics Facility Hitachi NAS 8063 computers and come from
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running only the estimators. The conversion of telemetry, correction for known calibration

errors, and generation reference data are not included. These speeds are for running interac-
tively rather than in background mode. Background execution can be much faster, but the

relative speeds should be similar. As expected, regular QUEST is the fastest. Addition of

propagation to Filter QUEST cuts its speed in half. It is still, however, more than three times

as fast as the batch estimator, the speed of which has been greatly increased since it was origi-
nally coded.

6. CONCLUSIONS

In conclusion, this study suggests that Filter QUEST pays in speed for what can be a small

increase in accuracy. For this reason, it seems more suited for use as an upgrade from regular

QUEST than as a replacement for the batch estimator. For spacecraft with only limited peri-
ods of complete attitude observability, however, this can mean the difference between know-

ing and not knowing the attitude in real time. Because the Filter QUEST algorithm reduces

to regular QUEST when the memory length parameter a is zero, there is no risk in substitut-

ing it in all current and future applications of QUEST.
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ABSTRACT

The COsmic Background Explorer (COBE) spacecraft was launched in November 1989 by NASA to survey the sky
for primordial radiation left from the "Big Bang" explosion. The success of the mission requires an accurate
determination of the spacecraft attitude. While the accuracy of the attitude obtained from the attitude sensors is
adequate for two of the experiments, the higher-accuracy attitude required by the Diffuse InfraRed Background
Experiment (DIRBE) is obtained by using the DIRBE instrument as a special type of star sensor. This paper presents
an overview of the attitude processing algorithms used at the Cosmology Data Analysis Center (CDAC) and
discusses some of the results obtained from the flight data.

1.0 INTRODUCTION

The COsmic Background Explorer (COBE) spacecraft was launched by NASA in November 1989 to survey the sky
for primordial radiation left from the Big Bang. The spacecraft carried three very sensitive instruments: (1) the
Diffuse InfraRed Background Experiment (DIRBE) to survey the sky in the 1 to 300 micrometers wavelength in ten
bands; (2) the Far InfraRed Absolute Spectrophotometer (FIRAS) to survey the sky in the 0.1 to 10 millimeter
wavelength bands; and (3) the Differential Microwave Radiometer (DMR) to determine whether the primordial
explosion was equally bright in all directions. The FIRAS and DIRBE are enclosed in a liquid helium cryostat to
provide a stable low-temperature environment. These three instruments, along with the cryostat and the shield to
protect the instruments from illumination by the Sun and Earth, form the upper half of the spacecraft (instrument
module) (Figure 1). The lowerhalf of the spacecraft (spacecraft module) includes the mechanical support structure,
the attitude control system, the instrument and spacecraft electronics, and the solar cell arrays.

The COBE was placed into a circular Sun-synchronous orbit 900 km above the surface of the Earth. The spacecraft
crosses the equator from north to south at approximately 6 a.m. local time. The orbit of the spacecraft is inclined
99 degrees to the equator and precesses to follow the apparent motion of the Sun relative to the Earth.

The COBE spacecraft rotates about the spacecraft X-axis at approximately 0.815 rpm. The COBE attitude control

system points the spin axis (FIRAS line of sight) at approximately 94 degrees away from the Sun and in a generally
outward direction from the Earth. The spacecraft rotation allows DIRBE and DMR to observe half the sky every
orbit, as their lines of sight are 30 degrees away from the spin axis.

The COBE attitude control system is composed of: (1) attitude sensors: two-axis Digital Sun Sensors ('DSS), infrared
Earth-horizon Scanner Assemblies (ESA), rate integrating gyros, and Three-Axis Magnetometers (TAM); (2) attitude
controllers: reaction wheels, electromagnets (torquer bars), and a pair of large rotating momentum wheels; and (3)
a set of control electronics. Figure 2 shows the COBE attitude sensor and control system geometric configuration.
The three control axes lie in a plane perpendicular to the spacecraft spin axis and are labeled A, B, and C. The
reaction wheels control the spacecraft spin axis orientation by applying controlled torques along these axes. The
large momentum wheels are used to control the spacecraft spin rate and to maintain approximately zero net angular
momentum about the X-axis. The electromagnets provide control torques from the Earth's magnetic field to
discharge the angular momentum build-up in the reaction and momentum wheels. The electronics and data handling

systems on the spacecraft collect the data from the instruments and attitude sensors and transmits these data to the
ground. The complete data slrearn is recorded on two on-board tape recorders and played back to the
ground-receiving station at Wallops Flight Facility once (or twice) per day. In addition, the spacecraft is monitored
periodically in realtime and commands are sent to it through the Tracking and Data Relay Satellite System (TDRSS).
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Thegroundreconstructionof thespacecraftattitudeforinstrumentdatainterpretationis performedattheNASA
CosmologyDataAnalysisCenter (CDAC). This paper presents an overview of the CDAC attitude processing
algorithms and discusses some of the results obtained from flight data.

2.0 PROCESSING ALGORITHMS

The initial estimate of the spacecraft attitu_ is ob_t:_d by processing the attitude sensor data. The initial attitude
estimate is also called the "coarse aspect". The accuracy of the coarse aspect is further improved using the DIRBE

instrument payload data in the telemetry. This refined attitude is called the "DIRBE fine aspectL

2.1 Coarse Aspect

The coarse aspect is derived from the Sun sensor, Earth scanner, and gyro measurements. Observation vectors
required in the attitude computation are constructed from the sensor measurements. The inertial reference vectors
are constructed using analytical methods. The Q-method (QUEST) (References 1, 9) is used to obtain an epoch
attitude from observation vectors and reference vectors. The attitude at other times is obtained by propagating the

epoch attitude to the observation times using the body angular velocity derived from the gyro measurements.

2.1.1 Observation Vectors Computation

There are six two-axis digital Sun sensors (DSS) on the COBE spacecraft. Three of the DSS's serve as primary
sensors, and the other three serve as backups. The alignment of the sensor axes with respect to the spacecraft

reference frame is shown in Figure 3.

Each DSS has a 128x128 degree square field-of-view (FOV). They measure the projection angles of the Sun vector
in the DiS sensor reference frame. A detailed description and operation of the DSS used on COBE, as well as the

procedure for obtaining the Sun vector in the spacecraft coordinate frame, are also described in Reference 1.

The spacecraft-to:Sun vector in the inertial frame _ obtained by the analytical procedure described in Reference 2.
The distance between the spacecraft and the Earth is neglected in computing this vector.

The COBE spacecraft has three infrared Earth-horizon Scanner Assemblies (ESA) for tracking the spacecraft nadir.
A brief description and operation of the sensor can be found in Reference 3. The ESA sensor reference axes
orientation in the spacecraft reference frame is as shown in Figure 4. The ESA's measure the angle between the

spacecraft +X axis and the nadir vector in the sensor scan plane (split-to-index angle), which is normal to the sensor
Z axis.

The EtA split-to-index angle measurement, along with the Sun observation vector computed earlier, is used to
compute the spacecraft nadir angle, 11(Figure 53. By using techniques of spherical trigonometry one can derive the

following relation for 11:

cs x a, ÷ aB x cF + - cec n) -

s( ) = sin ( ); c( ) = cos ( ); B, P, F are the angles def'med in Figure 5.

The nadir vector direction in the EtA sensor reference frame is then given by

j¢.,. xa, ,, ,m]r. (2)
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The nadir vector in the spacecraft reference frame is obtained by premulliplying N by the sensor-to-spacecraft

alignment ma_ix. It can be noted that two solution vectors exist for each split-to-index angle measurement (one for
each value of _). The correct nadir solution vectors cluster very closely in the spacecraft reference frame. The
effective nadir vector is taken as the average of all the correct solution vectors.

The spacecraftnadirvectorintheinertialframeisobtainedfromthespacecraftorbitdatacomputedby theGoddard

SpaceFlightCenter'sFlightDynamicsFacility(FDF) (Reference4).

2.1.2 Spacecraft Body Angular Velocity

The COBE spacecraft has six single-axis rate integrating gyros for spacecraft body angular velocity measurements.
The gyro input axes are oriented in the spacecraft frame as shown in Figure 6. For ground processing, measurements
from only one of the three X-axis gyros is telemetered to the ground. The X-axis gym selected for the telemetry
is commanded from the ground. Currently, of the three control axis gyros, only A- and C-axis gyros are active.
The B-axis gyro failed in flight a few days after the launch.

The spacecraft angular velocity component in the direction of the gyro input axis is related to the gym measurement
of this quantity, W, by

= (1 +n, ci--,t,c,x (5)
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Figure 6. Gyro Input Axes Orientation
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where U's are unit vectors in the direction of the gym input axes in the spacecraft body frame; W is the true body
angular velocity vector; B designates the gyro rate biases; K represents the gyro scale factors; and N specifies the
gyro output noise terms, which are assumed to be negligible. The direction vectors of the gyro input axes are
obtained from the pre-launch alignment measurements of the gyro input axes. Given the values of gyro drift rate
biases and the scale factors, the above set of linear equations can be solved for the components of the spacecraft
angular velocity in the spacecraft body frame. Estimation of COBE gyro drift rate biases and scale factors are
discussed in Reference 5.

2.1.3 Attitude Computation

The coarse aspect determination procedure is based on the key assumption that the error in the modeling Of the
spacecraft motion using gyro data is smaller than the error in the sensor data. The procedure uses all the Sun and

nadir vectors in a batch process to determine the spacecraft attitude at an epoch time and uses spacecraft body
angular velocities to propagate the epoch attitude to other times. This method has been used successfully in other
spacecraft missions (see Reference 7).

Assume that we have a set of vector observations resolved in the body frame: W1, W2,...Wn at times T1, "12.... etc.,
as well as the corresponding reference vectors in the inertial frame (e.g., Gcr). Assume also that we have gyro data
synchronized to the observation times, and that the calibrations of the gyros (scale factors, alignments, and drift rates)
are reasonably well known. We wish to compute an attitude at some epoch time (assume T1 for convenience, but
it could be any time in the interval).

Take some initial attitude estimate at time T1; this could be the result of a single-frame attitude algorithm or could
be completely arbitrary, since the QUEST algorithm is linear and, therefore, does not depend on the initial estimate.
Express the estimate as a quaternion Q1 (see Reference 1 for quaternion definition). Use the gyro data to compute
rotation quaternions between the observation times: Q12, Q23, etc. Propogate the initial estimate to the observation
times

O'2 ,, 01×012,
Q3 ,, QI ×Q12×Q23,etc.

(4)

The propagated quaternions are used to rotate the observation vectors to the inertial frame at T1. This can be done
by calculating the rotation matrix [A] corresponding to each Q and multiplying the observation vectors by the inverse
of the matrix; i.e.,

All of the transformed observation vectors and the reference vectors are used as input to the QUEST algorithm and
a correction quaternion DQ is computed. The initial estimate is then corrected by quatemion multiplication

011= 00 x Ol. (_)

Any of the other propagated quaternions can be corrected in the same sense to provide attitude estimates at other
observation times.

2.2 DIRBE Fine Aspect

The DIRBE fine aspect determination system uses the DIRBE experiment as a star tracker to improve the accuracy
of the coarse aspect solutions. The DIRBE field-of-view (FOV) traces a helical scan path in the sky. The fine
aspect determination procedure consists of identifying stars that pass through the DIRBE FOV and then correcting
the coarse attitude using these identified stars as attitude reference points.
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2.2.1 DIRBE Star Identification

The DIRBE data in the short wavelength (1.25-5.0 micron) bands contain a large number of peaks due to star

passages across the instruments' FOV, as well as sharp spikes due to cosmic rays and broader peaks due to the
galactic plane and extended sources. Of the three short wavelength DIRBE bands, one has the greatest a priori
knowledge of the sky in the K-band (2.2 micron) because of the Two Micron Sky Survey (TMSS) (Reference 8).
Hence, the DIRBE data from the K-band channels was chosen for star identification.

In order to separate DIRBE star peaks from the broader peaks due to galactic plane and extended sources, DIRBE
data is passed through a non-recursive f'dter ('matched falter") of the form

L _4, (7)

where Y is the filter output; X represents the DIRBE measurements; W represents the t'dter weights; G t is the rdter

output normalizing gain and L is the filter length.

The f'dter length, L, is determined by the width of the DIRBE star passage given by (DIRBE FOV size)*(DIRBE
sampling rate)/(DIRBE scan speed). The DIRBE instrument has a 0.7 x 0.7 degree square FOV. The DIRBE
samples are telemetered at the rate of eight samples pet second. Since the DIRBE optical axis is inclined at 30
degrees to the spacecraft X-axis, the DIRBE scan speed on the sky is half the spacecraft spin rate. At the
spacecraft nominal spin rate of 0.815 rpm, the DIRBE star peak is 2-3 samples wide. In the present work, the filter
length is chosen to be eight samples with the following set of filter weights: W=(-1,-1,3/4,5/4,5/4,3/4,-1,-1). Note
that the filter output is zero for constant input signals as well as input ramps. Also, with the filter length of 8

samples, the confusing sources more than 2 degrees away will be outside the f'dter w_ndow.

The f'dter output normalizing gain function, Gk is chosen as

Gt M/n[32767, 1.1Ot4 * 1] if t001Ykl " Ok_,

othzrwisz.
(8)

The value of G(0) is arbitrary. In between star peaks, the matched filter output tracks the background noise in the
DIRBE data. The gain algorithm then dampens the response to the fdter output, thereby normalizing the star peak
intensity to the current estimated noise level.

The f'dtered DIRBE signal from all the selected channels is scanned for candidate star peaks using the following
selection criteria:

1) The peak flux should be greater than a specified minimum.

2) The signal should peak in all the selected DIRBE channels simultaneously. This ensures rejection of

spikes due to charged particles.

The time of the star observation at a candidate star peak is computed as

Tp ,, /l:k)- [(L- 1)12-N(k)] (9)
$

where N0c) is the star position (in number of DIRBE samples) within the last L data points (cenU'oid). The centroid
in each of the DIRBE channels is computed as
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forL.=8,f=(5112,5/12,-3/2,-I/2,1/2,3/'2,-5/12,-5112)and g=(-l,-l,l,l,l,l,-l,-l).The effectivecentroidistakenasthe

average cenm3id of allthe selectedDIRBE channels.

The approximate DIRBE line-of-sight (LOS) direction (in the inertial frame) at the star observation time, T v is
defined by the unit vector

Op ,, A m x Am x _o. (II)

where: 0_, is the DIRBE LOS in the DIRBE reference frame.

A_ = rotation matrix to go from the DIRBE frame to the spacecraft body frame (derived from the

DIRBE alignment data).

Atj ffi rotation maa'ix to go from spacecraft body frame to inertial frame (derived from the coarse
attitude).

The DIRBE t'me aspect star catalog is searched for a star that lies very close (within a predefined search radius) to

Up. The t-me aspect star catalog contains 1207 bright stars selected from TMSS, Smithsonian Astrophysical
Observatety (SAO), and IRAS point source catalogs. The selection was based on the following three criteria
(Reference 6):

1) the K-magnitude < 3.0. This ensures that a measured 2.2 micron flux exist for most sources.

2) RMS centroiding error less than 1.5 are-rain, as determined from the effects of other stars near the
bright star.

3) No brighter neighbors within a 1.75 degree radius. Because the nearest star to the coarse attitude

position is assumed to be the identified star, stars with brighter neighbors should be avoided.

Ifthe catalogsearchfailstofind a startoassociatewith a candidatestarpeak, then thatpeak isdropped and is

labeled as "falsepeak'.

2.2.2 DIRBE Differential Correction

The differential correction consists of t'mding small corrections to the coarse attitude using the DIRBE identified

known stars as attitude references. The attitude error can be represented as an inertial vector (Reference 7). If we

assume that the error due to the imperfect modeling of the spacecraft motion by the gyros is negligible, then the

coarse attitude error can be represented by constant rotation in the inertial frame. The following differential
correction procedure is based on thiskey assumption.

Let dA denote the constant rotation matrix which takes the coarse attitude predicted body frame to the true body
frame. Assuming that this rotation is small, one can write
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1

-a

(12)

where a, b, and c are small angle rotations about the body x, y, and z axes, respectively. Thus, the differential
correction problem is reduced to finding the three small rotation angles a, b, and c.

A

If we def'me a vector, P = transpose [a, b, c], then the change in any unit vector, V, under the action of dA is given

by

aP-- _ × P 03)

Assume that N DIRBE star sightings have been identified after processing the DIRBE raw data. Then

Ot-/_k " P ×/_k, (k= 1,...,/_, (14)

where 0 is the unit vector to the k* DIRBE sighted star, and b is the unit vector along the DIRBE LOS predicted

by the coarse attitude at the k_ star observation time.

It is also true that

(1$)

where if' is the body angular velocity at the ka star observation time and <,> denotes the scalar product of two
vectors. The left-hand side of the above equation is the along scan component of the vector representing the
deviation of the coarse attitude-predicted DIRBE LOS vector from the vector pointing to the DIRBE sighted star.

Using techniques of vector algebra, the fight-hand side of Equation (15) can be written as

(16)

where El = l_t -/_, (/),. l_'k) denotes a vector perpendicular to/_, in the plane formed by l_l and/_a.

One can set up the following N-linear equations, one corresponding to each DIRBE-sighted star. for the three
unknowns a, b, and c:

For N > 3, this will be an over-determined system which can be easily solved for a, b, and c in a least-squares sense.

The quaternion representing the differential correction rotation is given by (first order approximation)

d_,, '2'2'
(18)

3.0 ANALYSIS AND PROCESSING PIPELINE PERFORMANCE USING FLIGHT DATA

A number of significant improvements to the COBE Attitude processing pipeline have resulted directly from analysis

oftheflight data. The most important oftheseare:

1) Earth scanner acquisition-of-signal (AOS) timing adjustments

159



2) Gyro calibration and temperature correction

3) DIRBE boresight alignment

Each of these is discussed below, followed by a summary of the overall system performance.

3.1 Earth Scanner AOS Timing Adjustment

During the fhst several months of the mission, the coarse aspect solutions contained significant periodic pitch errors.
The errors could readily be seen by projecting the fine aspect differential corrections onto the roll, pitch, and spin
axes. These errors had an orbital frequency and the magnitude varied according to the time of year. The errors were

not symmetric about the orbit but appeared to depend on the angle between the spin axis and the orbit plane. The
maximum error was approximately 0.4 degrees at the winter solstice; the errors were small in early March 1990, but
then incr_ to approximately 0.6 degree at the summer solstice.

It was proposed by one of us (E. Wrigh0 that this was consistent with an average timing error of 0.25 degree (one
telemetry minor frame) in the Earth-horizon scanner data, at the COBE spin rate. This prompted a detailed analysis
of the Earth-horizon Scanner Assembly (ESA) data timing and, in particular, the ESA Acquisition-of-Signal (AOS)
data in the ESA telemetry,

The AOS is meant to indicate the delay between the computation of each ESA Split-to-Index (Sir) value and the time
at which the ESA is read by the spacecraft telemetry unit. The ESA rotates at approximately 4 hz, the same as the
minor frame (mF) period, so the SI data can be up to 1 mF old by the time it is sampled. In principle, the SI time
tag can be corrected by the AOS to get the true sample time.

The flight data showed that the telemetered AOS seemed to contain no useful information about the SI sample times.
The AOS values for all three ESA's cycled continously through the total range of 0.0 to 0.25 .seconds with a period
of about 11 seconds, producing a "saw-tooth" pattern. The SI values showed no behavior which correlated with the
AOS cycles; in fact, correcting the SI data using the AOS resulted in obvious discontinuities in the SI data first

derivatives at the AOS roll-over points. Thus the AOS data were determined to be not useful and were ignored for
data lxocessing.

Additional analysis was performed to determine if the true AOS could be derived from the data. Simulated ESA

SI data were generated using ine Aspect solutions and compared with the telemetered values. Figure 7 is a plot of
the differences between the telemetered and simulated values for one ESA over a 20-minute period. The oscillation
in the data is produced by the spacecraft rotation period of approximately 73 seconds. The pauern in the plot is
consistent with a true AOS which "roils over" from 0.25 to zero seconds about every 10 minutes. The differences
resulting from the AOS are out-of-phase with the SI data and are proportional in amplitude to the magnitude of the
AOS and the amplitude of the SI data.

The difficulty with this conclusion is that there is no direct method to determine the AOS from telemetry alone. The
simplest scheme from an operational standpoint was to simply average the AOS by including a constant correction
of 1/'2 mF (0.125 second) to the time tags. This average correction produces reasonable results if the attitude
propagation intervals are longer than the AOS rollover period. Fortunately this period was shorter (about I0 minutes)
than the typical solution interval (20 to 45 minutes). This average correction has produced very satisfactory results.

Figure 8 (a) shows the pitch corrections applied to the coarse aspect by the time aspect solutions for the prelaunch
definition of the AOS, while Figure 8(b) shows the corrections for the same time period using the 1/2 mF average
AOS value, The pitch errors are now typically less than 0.1 degree. This has had the added benefit of allowing the
star identification tolerance for the fine aspect system to be reduced, resulting in fewer misidentifications.
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3.2 Gyro Calibration and Temperature Correction

This topic is discussed in considerable detail in Reference 5. Only the analysis and performance results will be
summarized here.

For much of the f'wst year of the mission the ground segment calibration facility was still in the development and

testing stages. The attitude processing for quick-look analysis relied mainly on manual estimation of the spin axis
scale factor to minimize the attitude propagation errors. While this was adequate to support the coarse requirement
(1 degree 3 sigma), it was time-consuming, did not allow quick response to calibration changes, and did not support
calibration of the control axis gyros. The problem was aggravated by the apparent drift in the spin axis gyro
calibration, especially at the start and end of the eclipse season. At various times calibration parameters were
obtained from the COBE FT)F, but this was only an interim solution. The fine aspect processing from this period
clearly showed the effects of the gyro propagation e_, and only in rare instances was the 3 arc-minute requirement
met.

It was not until late summer 1990 that serious attention could be devoted to the attitude propagation problem. At
this time the gyro calibration facility testing schedule was accelerated. At the same time, analysis was undertaken
of other possible sources of propagation error, since these errors showed periodic behavior which did not seem to
reflect calibration errors. This analysis culminated in the demonstration of the AX gyro scale factor/'oaseplate
temperature correlation in August 1990, an effect that explained not only the short-term variations but also the
seasonal drifL A correction for the temperature effect was included in the Attitude pipeline shortly thereafter.

With the temperature correction in place, the testing of the calibration facility was rapidly completed. The algorithm
was shown to converge rapidly for two test cases: the early-mission spin-up of the spacecraft from 0.23 to 0.82 rpm,
and the normal mission phase with nearly constant spin rate. The early mission results provided useful visibility on
the important gyro calibration parameters (X gyro scale factor and bias and control axis gyro scale factors). This
parameter set was used to initiate the normal mission calibration activities.

The results of the gyro calibration and temperature correction can be clearly seen in the observation residuals for
the fine aspect solutions. As previously stated, the t'me aspect solution residuals did not consistently meet the 3
arc-minute specification prior to the resolution of the gyro propagation errors. With current capabilities, the residuals
Figure 9 are typically 1.5 arc-minutes (includes some error from the star centroids in the star catalog, where the
criterion was 1.5 arc-minutes), half of the specification. ('Note that this is after the boresight alignment adjustment,
discussed in the following section.) The fine aspect residuals are also mmh more consistent, without the large
variations in solution quality that were previously evident. Finally, the improvements in gyro propagation have also
allowed the solution arcs to be increased from 20 to 45 minutes. This has allowed more DIRBE star observations

to be included in each solution, improving the outlier rejection capability, and has allowed solutions to span intervals
of no observation that result from DIRBE calibration activities and South Atlantic Anomaly crossings.

3.3 DIRBE Boresight Alignment

The errors of the DIRBE boresight alignment components (azimuth and elevation) were evaluated at different stages
of the Attitude Pipeline analysis. The elevation (i.e., cross-scan) err_ became apparent soon after regular fine aspect
processing was initiated. Plots of star observations in the DIRBE FOV showed that the cross-scan pattern was of
approximately the width of the beam (0.7 degrees), but the average was offset from zero by about 4 arc-minutes.
This offset was consistently observed in all of the fine aspect processing, so a correction of the elevation angle was
approved early on for both the attitude and the DIRBE processing. This change had no effect on the fine aspect
observation measurements (as only along-scan residuals are used in the fine aspect correction), and hence did not
affect the solution results.
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The azimuth (along-scan) error is much more difficult to observe, since the fine aspect differential corrcctor is
performing a least-squares minimization of the along-scan deviations. For short solution intervals, in which the total
spin axis precession is not significantly greater than the size of the DIRBE scan cone, the minimization process tends
to absorb most of the azimuth alignment as a component of the computed aspect correction. Since the gym
propagations remained short (20 minutes or less) and the observation residual noise was relatively large, the azimuth
alignment error was not observable.

As discussedabove,followingthe incorporationof the gym calibrationand the temperaturecorrection,the
propagationintervalswereincreasedandthef'measpectobservationnoisewas reduced.Under thesecircumstances,

a consistentmean residualwas observedof a magnitudeof approximatelylarc-minute.For longerpropagation

intervals,therotationrequiredtoremovethemean residualintroducedby an azimuthalignmenterrorchangestoo
much tobe computedasa singlerotation;infact,forthe45-minutepropagationintervals(almosthalfoftheorbit

period),therequiredrotationisalmostcompletelyreversedfrom thestarttotheend of the interval.Thus a

significantmean residualremainsevenaftertheminimizationprocess.

Initial experiments to nullify the mean residual used adjustments of the DIRBE data sample timing rather than the

boresight azimuth; for a contant spin rate, the effects of these two changes are indistinguishable, and the design of
the Attitude Pipeline made it easier to use the timing adjustment for testing purposes. It was readily found that a
sample timing delay of 15 milliseconds was sufficient to reduce the mean residual to negligible values for several
test intervals. This change also reduced the RMS observation residuals by about 25 percent, indicating that the
retiming of the data also improved the overall fit to the error model. Note that this timing change represents
along-scan boresight motion of approximately 0.036 degrees, more than twice the observed mean residual, indicating
that a large part of the mean residual was still being absorbed by the least-squares fit even with 45-minute
propagation intervals.

For implementation of this correction it was decided, in consultation with the DIRBE science team and the software
developers, to use a correction to the azimuth alignment rather than the sample timing, as this form of the change
was more easily accomodated by the system as a whole. The correction was computed to be 0.0738 degrees,
equivalent to 15 milliseconds of spacecraft rotation at the average spin rate of 4.92 degrees per second. This
correction was shown, as expected, to have precisely the same effect as the timing change.

The effect of the boresigbt azimuth correction is illustrated in Figure 10. The first figure shows a histogram of the
fine aspect observation residuals for a 5-day period with 5,710 star observations, using the prelaunch-measured
boresight azimuth. The second plot shows the same data with the updated azimuth. The latest gyro calibrations were
used for both cases. The plots illustrate the reduction in both the mean and the spread of the residuals. In the
second case, the RMS residual is 1.2 arc-minutes, less than half of the fine aspect specification.

In retrospect, it might have seemed reasonable to include in the ground segment software a capability to determine
the azimuth alignment directly, since it clearly impacts the free aspect solution quality. However, the experience
with the flight data shows that the observability of this parameter would have remained poor until the gym
propagation problems were resolved. At that point, determination of the correction became trivial; the most
significant part of the effort was to verify the value over the duration of the mission.

3.4 System Performance

The CDAC attitude processing software is designed to operate in an automated production processing environment.
Typically, the system (a shared VAX 8820 computer ) generates the attitude for a 24-hour data segment in about
1 hour. With the current system, the accuracy of the free aspect is typically in the range of 1.5-2.0 arc-minutes
for the 1989 and 1990 mission data.

At the beginning of 1991, the quality of the attitude solutions degraded because of the poor quality X-axis gym data

resulting from the degradation in the A, gym hardware performs. In March 1990 the X-axis gyros on the
spacecraft were reconfigured to feed B, gyro data into the telemetry for ground processing. At this time, the tuning
of system parameters for data from Bz gym is still in progress.
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ABSTRACT

This paper discusses calibration of the scale factors and rate biases for the Cosmic Background Explorer (COBE)
spacecraft gyroscopes, with emphasis on the adaptation for COBE of an algorithm previously developed for the Solar
Maximum Mission (SMM). Detailed choice of parameters, convergence, verification, and use of the algorithm in
an environment where the reference attitudes are determined from the Sun, Earth, and st,%robservations (via the

Diffuse Infrared Background Experiment [DIRBE]) are considered. Results of some recent experiments will be
shown. These include tests where the gyro rate data are corrected for the effect of the gyro baseplate temperature

on the spacecraft electronics.

1. INTRODUCTION

This paper presents the results of a successful implementation of a gyro calibration system for support of the ongoing
Cosmic Background Explorer (COBE) mission. The algorithm has been previously implemented successfully in the

High-Energy Astrophysical Observatory (I-_EAO), SMM, and (most recently) Hubble Space Telescope (lIST)

projects. The application for COBE is in support of final aspect determination for the production of the Project Data
Sets in the Cosmology Data Analysis Center (CDAC). The COBE attitude profile is unique and thus imposes
constraints and demands on the calibration algorithm that have not been encountered in prior applications.

The scope of this paper is somewhat unusual in that it combines the implementation and theoretical verification of
the calibration system with the analysis of results and practical limitations based on the flight data. A coauthor
(Freedman) performed substantial verification of the algorithm based purely on mathematical analysis and verified
these conclusions using simulated data following implementation. Another (Patt) relied upon hands-on experience
with past calibration applications to explore the practical limitations of the algorithm using the flight data and to

thoroughly exercise the system in a variety of on-orbit situations. In doing so, we discovered the surprisingly
dynamic behavior of the gyro temperature and the substantial impact that it has on the calibration stability.

The paper has been organized as follows: Section 1 summarizes the need for gyro calibration in the aspect
determination and the choice of the algorithm. Section 2 presents the implementation details and the preflight
verification. Section 3 discusses the results of the actual calibration using the flight data. Section 4 summarizes the
results and discusses the human interface.

1.1 THE NEED FOR GYRO CALIBRATION IN THE COBE GROUND SEGMENT

The final aspect determination for the COBE mission depends critically on the accuracy of the gym-propagated
attitude. This is especially true for the DIRBE Fine Aspect determination; because the DIRBE star sightings occur

on the average once per minute, the gym propagation is the critical link that spans the time between observations
and allows a number of observations to be incorporated into a single solution. Even for the Coarse Attitude
determination, which has much less smngent requirements, the gyro propagation provides substantial smoothing of
the solutions and minimizes the effects of sensor quantization errors, misalignments, and unmodeled systematic
errors. Although at some point the gym aititude propagation will inevitably degrade because of gyro noise and

digitization errors, the accuracy of propagation depends to a large degree on the quality of the gyro calibration.
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1.2 THE CHOICE OF THE CALIBRATION ALGORITHM

The SMM gyro calibration algorithm (Ref. 1) was chosen over in-line (i.e., integral to the attitude determination
process) algorithms based on the following factors:

This algorithm, which was originally developed at Goddard Space Flight Center (GSFC) by Mr.
P. Davenport, has been thoroughly flight-tested on previous Center projects. It is well known to
one coauthor (Part), who has used it successfully on the SMM and previous missions.

• Input to the algorithm consists of attitude quaternions and angular velocities so it is independent
of sensor data type and may be used with Fine Aspec_ solutions.

• It is compatible with the use of the Quest algorithm and with batch-least-squares attitude

algorithms, which had already been designed into the COBE ground segment.

The algorithm is linear in the complete set of gyro calibration parameters: scale factor corrections,

misalignments, and biases. It readily supports user selection of the solve-for parameter subset,
and it allows for analytical determination of parameter visibility.

• It has no inherent limitations on the number of attitude solutions that can be incorporated into the
calibration and therefore can use an arbitrary time span of data.

It can be fully automated using the existing file structure in the COBE Attitude software system.
Its design as an adjunct to the software rather than an integral part is consistent with the
philosophy of automated pipeline processing and supports its use as a quality assurance tool.

2.1 ALGORITHM DESCRIPTION

FolIowing the presetatation in Ref. 1 (which contains more detail), we note that any rate gyro assembly (RGA) must
be composed of at least three gyroscopes whose axis directions taken together completely span the space of possible
rotations.

An RGA consisting of three gyros will produce as a response a "vector" J_ of responses of individual gyros whose

sensitive axes are a_ 0=1,2,3) in the spacecraft body frame. This response vector is translated into a measured

angular velocity Wx in the body frame via the relation

m

where Go is the RGA 3 x 3 scale-factor/alignment matrix and DO is the drift rate bias.

Go is related to the scale factors k t and gyro alignments ai by the equation

6:o = (1 + kj)at, (i=1,2,3). [2]

If Go and/_o deviate from their true values, either because of poor initial calibration or because of temporal changes

in the RGA, _'M will differ from the true angular rate i_. The goal of the algorithm is to determine correction

matrices b_ and d that may be applied to G0 and/_o so that a modified equation [1] will yield the true angular rate:

[3]
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Theangularrate deviation w between the measured and true rates is given by

[4]

where _ = M-I and I is the identity matrix. The algorithm will solve for _ and d, separately or together.

Because the RGA we are considering contains exactly three gyros, _ and d contain sufficient information to allow

separate calibration updates of scale factor alignment and drift for the individual gyros.

The rotation from the RGA-determined end-of-interval attitude to the true end-of-interval attitude a'ansformed to the

start-of-interval reference frame may be determined. The vector part of this rotation quatemion, Z,, for the nth
calibration interval is given by equation [13] of Ref. 1 under the approximations that the rotation determined from
the RGA is in agreement with the true rotation to the first order in the error and that the error rotation angle is

sufficiently small that the cosine may be approximated by 1 (i.e., the fourth component of error quatemion is 1).

= -1/2ftL(,aff',+- E)],,, = [51

Here 7_, is the matrix for transforming vectors to start-of-interval spacecraft body coordinates.

m

Equation [2. I-5] is linear in the unknowns n_ and d and lends itself naturally to standard least-squares techniques.

Following equation (4-182) of Ref. 2, this rotation may also be written as

m

[6]

where #o and #x are the propagated attitudes at the start and end of the calibration interval, and #0x and qar are

the reference attitudes, respectively. The • denotes a quaternion conjugate.

The matrix equadon that represents this equation applied to N calibration intervals is written as

= _" _" [7]

where _ and the state vector _" are def'med as

Z = {Z(, /" T....,z,;F,
x = 1/2 (,n., m12, re!s, "_1, "n, %, "_1, _, %, all, d2, d.,9

and H is a 3N x 12 matrix determined by equation [5] above.

The linear "Bayesian" weighted least-squares loss function J may be used to place appropriate relative emphasis on
a priori known calibration values and the updated values as .-

-- T
J =1/2 [Er _" E +(x-x-'). $.. (x-_,,] [8]

where E = Z-H x.

if,' and S, are symmetric nonnegative def'mite weighting matrices and x', is an a priori estimate of _.
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Thegradientminimizationapproachappliedtoequation[7] yieldsthefollowingequationsforthestate-vectorx
of corrections to the drift rates and biases:

G

The A matrix above may be partitioned into submatrices as below:
I" I

!AI_ A_2[ where A is a 9 x 9 matrix, and A12, A21, and A_ are 3 x 3.
A-- ,4,,1

For scale-factor calculation alone, A12 and A21 are zero. Thus, scale-factor and bias may be separately computed.

The solved-for scale-factors are related to the solved-for 17 matrix by

(I = I tl where Gt is the i *_row-vecl_r of G. [10]

Application of this algorithm to COBE demands consideration of the following:

COBE has three 2-axis gyro packages, each of which contains one gyro closely aligned to the A, B, or C control
axes 120 ° apart in a plane, and one loosely aligned to the (orthogonal) spacecraft X axis. At any one time, data from

one X-axis gyro only are included in the processing. The B control-axis gyro failed early in the mission, leaving
the A and C control-axis gyros to support the mission. Because we do not have observability on all the gyro
misalignments, the sensitive axis unit vectors were fixed at the prelaunch values throughout the mission.

The input to this algorithm consists of the gyro sample rate T = 1 second, the reference attitude quaternions qm and

qzx at the be_nning and end of a calibration interval respectively, the measured angular velocities, and the duration

of a calibration interval, which consists of n equally spaced samples. The entire data set consists of N calibration
intervals. At least four calibration intervals are required to compute a scale-factor. One interval is sufficient to
compute a bias. Our implementation accepts only calibration intervals for which all gyro samples are present. A-
robust matrix inversion technique (Singular Value Decomposition) was used to solve the calibration equations.

Requirements of better than 3 arcminutes RMS residuals with up to 45-rain smoothing intervals demanded the use
of 1-sec gyro samples to compute the propagated attitudes multiplicatively in double precision arithmetic_ -, COBE

rotates through approximately 4.8 ° per second about the X axis, and it proved to be insufficiently accurate to
interpolate the 4-sec sampling rate attitude solutions to obtain adequate angular velocities. Gyro noise effects were
not significant in batches as long as 45 minutes.

Previous missions to which this algorithm has been applied carry an independent attitude sensor that yields reference
attitudes at commanded times considerably more accurate than is required of the overall solution, often as
commanded maneuvers.

The only formal attitude maneuvers in the early mission useful for calibration were the spin-up/roll-slew data, which
are discussed in Section 3.

COBE has no star-tracker, but data from the ongoing DIRBE star observations may be used to differentially correct
QUEST solutions obtained from batch estimates of the attitude from Earth and Sun sensors (see Ref. 3).

Comparison of the single-frame with gyro-smoothed attitude solutions demonstrated the attitude propagation
discontinuites at the smoothing interval boundaries. Numerical experiments showed that the QUEST solutions were

appropriate for reference attitudes and should be determined without interpolation. The QUEST solutions themselves
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dependon the accuracy of sensor observation propagation for synchronization (Ref. 3), so an iterative approach,
"calibrate.----determine QUEST solutions--.recalibrate," was applied.

A null initia/parameter set led to very slow or nonconvergence with oscillation over many iterations. Convergence
required a starting approximation so that the correction was small. An initial parameter set was therefore obtained
from the manual adjustment of the X-axis gyro scale factors and rate biases as described in Section 3.

The integrated difference rotation between reference and propagated attitudes was << 180 ° over the calibration

interval; thus, ambiguities and aliasing problems were avoided.

The attitude accuracy is isotropic (given several star-sightings), so the observation weights (i_ were chosen to be

identity matrices.

An "optimal" choice for the state vector weight matrix (,_ is the inverse of the normalized solution covariance

matrix. These weights are updated at each iteration.

This weighting scheme--in terms of the inverse of covariance matrices--is proportional to the inverse of the A

matrix described above; an order of magnitude estimate of A__ will be made in Section 2.3.

2.2 SIMULATED DATA TESTS

Simulated sinusoidal 3-axis attitudes with constant scale factor and alignment matrices and rate biases at constant
vector angular velocity were used to verify the implementation.

Table 1 shows that the input and recovered scale-factors and biases agree to several significant figures.

A sensitivity study performed with kinematically simulated data showed the expected proportional sensitivity to
scale-factor errors.

2.3 IMPLEMENTATION CHECK

Analytic expressions for every quantity of the algorithm were derived for detailed checks in the special case where

the reference attitudes are the transformation at the interval endpoints, combined with constant uniaxial angular
velocity and scale-factor-and-alignment matrix. The observation weights were chosen to be identity matrices, and
no a priori knowledge of the parameters was assumed.

This study led to order of magnitude estimates for the calibration equations in the notation of Ref. 1.

Al1(1,1)=1 +N(Wn)2

Al1(2,2)=1

Al1(3,3)=1

A12(1,1 ) =-(Wn z) [! 1]

A=(2,2) =.2

yl(1)=(NWn) sin (WriT/2)

Yz(1)=(NW.) sin (WriT/2)
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all other terms being zero, where N is the number of calibration intervals and n is the number of attitude samples

per interval. Pc"represents the observed angular velocity. 2"represents the duration of a calibration interval.

If we start with zero initial corrections, the calibration equations become:

[12]

Y= = Yl - AIz A_z Yz as above (m=1,2,,,n),

where A_ denotes the pseudo-inverse of the A_ submatrix.

These results were checked against the simulated values.

Note that the relative accuracy of propagation must be better than n -2 for adequate estimate of the calibration

equations, and an "optimal" relative weighting of n -2 on the sensitive axis is indicated.

3.1 CHOICE OF PARAMETERS AND STATE VECTOR CONVERGENCE (FLIGHT DATA)

The choice of the state vector elements to be included in the solve-for parameter set was based on a combination
of prelaunch analysis, simulation, and on-orbit verification of the calibration algorithm. The on-orbit results were

obtained for two cases: the initial spin-up of the spacecraft, and the constant-spin, standard operational mode. The
following subsections discuss the factors that limit state vector observability, followed by the methods and results
for the two cases.

Limitations on State Vector Observability

The COBE attitude control configuration (spin about one axis at 0.8 RPM combined with precession about the Sun

vector once per orbit) severely limits the observability of some gyro parameters and results in significant correlations
among others. The details of these limitations are best explored via the detailed methods of analysis, simulation,
and algorithm verification mentioned above; however, in a qualitative sense these results can be inferred intuitively,
which provides a convenient means for summarizing the observability problem.

The COBE gym configuration has one gyro aligned with the spin axis (there is onboard redundancy in this area, but
only one spin axis gym output can be telemetered) and two working gyros in the spin-normal plane, the redundant
gyro in this plane having failed soon after launch. (The spacecraft axes in this plane are referred to as the control
axes because they are used to control the spacecraft precession, or pitch, rate.) The control axis gyros are not
orthogonal but are 120° apart. In the standard gyro calibration parameter set, each gyro is subject to a scale factor
error, misalignments (measured as azimuth, or rotation about the spin axis, and elevation, or angle relative to the spin
axis), and a constant rate error, or bias.

For the spin axis gyro, if the spin rate variations are small, the scale factor and bias are almost completely correlated;

thus, one of these can be held constant. The effect of misalignments of this gyro is small, for two reasons: the
effect of any misa/ignment is a small fraction of the orbit precession rate, which is itself smaller than the spin rate
by a factor of 80, and the effect is cyclic and tends to integrate to zero each spin. Thus, for most of the mission
only one term need be considered for this gym. The exception, of course, was during the spin-up, when both the
bias and scale factor could be evaluatext.

The control axis gyro biases have an effect that is similar to the spin axis gyro misalignrnents: at the mission spin
rate they contribute a small cyclic error that integrates to effectively zero over one spin. The elevation components

of the misalignments result in an error that is a small fraction of the spin rate; in the mission mode this also amounts
to a constant rate error, which, like the biases, is essentially unobservable. The biases and the elevation errors are
thus highly correlated. (These parameters may be more visible at the lower spin rates from the early mission, and
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thispossibilityhadnotbeenexploredasof thiswriting.)Thescalefactorshavereasonableobservabilitybecause
thecontrolaxisgymoutputisessendallyasinusoidalmodulationof the spacecraft pitch rate; in other words, errors
in these scale factors would result in a pitch error that accumulates linearly. On the other hand, for an ideal

(wobble-free) control system, the control axis scale factors are completely correlated; the extent to which these are
individually observable depends on the nonunfformity of the pitch rate, the spin axis wobble, and the spin rate. The
azimuth alignment errors in these gyros have observability and correlation characteristics that are essentially identical

to those of the scale factors because they contribute to an accumulation of error about an axis perpendicular to the
pitch axis.

Weighting Scheme and Convergence Criteria

The algorithm allows for the observation and state vectors each to be independently weighted. For the COBE
calibrations we chose to use observation weights of unity and to use relative values for the state weights; in fact,
based on the estimated solution accm'acy, the true observation weights would have been approximately 1.E+6 for
the Coarse attitudes and 4.E+6 for the Fine Aspect. Therefore, the state weights were reduced by about l.E+6 from
values based on the estimated uncertainties, and evaluations of the state vector observability using the calibration

algorithm were performed by reducing the variances by the same factor. Thus, for example, a bias correction of 1.E-6
was considered significant only if the square root of the variance was 1.E-3 or less.

The state weights for the solve-for parameters were typically set at unity in the first iteration, equivalent to
uncertainties of about I.E-3, The weight for the spin-axis gyro bias was generally left at this value, although the
uncertainty was usually much smaller because the observability of this parameter was very good. The weights for
the other parameters would typically be increased after each iteration, depending on the magnitude of the correction
and its estimated effect on the attitude propagation errors. The best example of this is given in the following section.

As stated previously, the calibration algorithm is very linear, but only to the extent that the calibration errors in the
current iteration did not affect the accuracy of the attitude solutions used for the next iteration. For the COBE

attitude profile the propagation errors do not accumulate linearly with time; thus, even the attitudes at the midpoints
of the gym propagation intervals were affected by the calibration errors. Therefore, it was necessary to iterate on
the calibration if the errors in the a priori state vector were not small. The convergence criteria were selected for
each parameter based on its effect on the overall propagation accuracy relative to the Fine AsIx_t specification; the
criteria were I.E-6 for the spin axis scale factor, 1.E-5 for the spin axis bias, and 1.E-4 for the control axis scale
factors.

Gyro Calibration During the Spacecraft Spin-Up

The COBE spin rate was increased from its initial value of 0.23 RPM to the mission mode rate of 0.82 RPM in three
roughly equal steps, at 1-day intervals (November 25, 26, and 27, 1989). This activity provided the only opportunity
to separately calibrate the spin axis gyro scale factor and bias; it also provided excellent visibility on the individual
control axis scale factors.

The following table illustrates the convergence of the state vector. The a priori values were chosen to be I.E-3 for

the spin axis scale factor correction (based on the experience with manual adjustments to the scale factor) and zero
for all other parameters.

X Scale X Bias A Scale C Scale

Iteration Factor (deg/sec) Factor Factor

A Priori 1.0E-3 0.0 0.0 0.0
1 1.060E-3 4.7E4 1,96E-3 0.0
2 1.066E-3 5.2E-4 1.96E-3 -0.34E-3
3 1.066E-3 5.2E4 1.96E-3 -0.,_5E-3

The initial weights were chosen to be unity for the solve-for parameters (for the control axis gyros this included the
scale factors and azimuth misalignments; because of the nonorthogonal transformation between the control gym and
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thespacecraftaxes,thescale factor.and azimuth corrections are coupled in the calibration; the misalignments
corrections were insignificant) and !.E+4 for all other parameters. At each iteration, the weights for the updated

parameters were increased by a factor of 100, except for the spin (X) axis bias, which was allowed to "float." The
convergence was very rapid for the spin (X') axis parameters, with about 90% of the residual error being removed

at each step. The A gyro scale factor also converged rapidly. The correction to the C gyro was small in the first
iteration and was intentionally omitted to ensure that it was not affected by the much larger errors contributed by
the A and X scale factors.

It is interesting to note that during the spin-up calibration, the A and C gyro scale factors were not highly correlated.
This was most likely due to the combined effects of lower spin rates and increased spin axis wobble at the lower
rates, both of which increase the observability of the individual contributions of these gyros to the propagation errors.

These initial values provided an excellent starting point for the subsequent calibrations to be performed, for which
the correlation of these scale factors is expected to be much higher because only differential corrections should be

required for the remainder of the mission.

The effect of the control axis scale factor calibration is illustrated in Figures la, lb, and 2. Figures la and lb show

a histogram of Fine Aspect observation residuals before and after thefull calibration for 1,170 stars observations on
December 18, 1989, with the temperature effect discussed in Section 3.2 included for both runs. For Figure la, the
X-axis scale factor was adjusted by hand to minimize the average drift rate, and nominal control axis scale factors
were used; the full calibration parameter set was used for Figure lb. The overall reduction in the residuals is clear,

with the RMS reduced from 0.031 ° to 0.020 °. Perhaps more importantly, the full calibration dramatically reduced
the number of observations with residuals greater than 0.05 ° (the Fine Aspect requiremenO, and the overall
distribution is much more Gaussian.

In addition to the Fine Aspect residuals, another sensitive measure of the gym propagation accuracy is the continuity
of the attitude at the boundaries between propagation intervals. Figure 2 shows the discontinuities between attitude
intervals before and after the calibration; the average discontinuity was reduced by more than half, from 0.16 ° to
0.07 °.

The independent determination of the spin axis and scale factor is useful in that there is enough variation in the spin
rate (from 0.80 to 0.83 RPM) to set a minimum accuracy level for the scale factor itself. This parameter can then
be fixed for the remainder of the mission, and any residual spin axis rate errors can be absorbed by the bias term.

Gyro Calibration During Normal Operations

As discussed in the previous section, the requirement for the ground segment gym calibration activities during the

COBE mission phase is twofold: to null the average azimuth drift rate by computing the spin axis bias to high
accuracy and to compute differential corrections to the control axis gyros to minimize any pitch rate propagation
errors. The spin axis gym temperature correction is expected to account for most of the drift rate errors observed
during the first year of the mission, so the bias corrections are also expected to be small.

As of this writing, the ground segment gym calibration had not yet been performed for the entire first year of the
mission, so only a few test cases have been performed. An illustration of the mission calibration procedure was
provided by processing a segment of data from December 1989, a few weeks after the spin-up. The a priori values
for this calibration were the final results of the spin-up calibration, and the weights for the solve-for parameters were
once again set at unity. The convergence for this calibration was very rapid, using the same convergence criteria

as before, so there was no need to adjust the state weights. The results were as follows:

X Bias A Scale C Scale

(deg/sec) Factor F_ctor

Initial 5.2E-4 1.96E-3 -0A6E-3

Final 3.2E-4 1.68E-3 -0.78E-3
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Theseresultsillustratethecorrelationof thecontrolgyroscalefactorsbecausethecorrectionstoeachwerenearly
thesame.Nonetheless,thecorrectiortssucceededinminimizingthe pitch component of the propagation errors. The
success of this calibration can be judged by the fact that the Fine Aspect solution for this time period produced RMS
observation residuals of 1.2 arcminutes, vs. a 3-arcmin accuracy requirement. Thus we conclude that this approach
will be very effective for the entire COBE mission, barring any gyro anomalies.

3.2 TEMPERATURE CORRECTION

For most of the Fast year of the COBE mission, the gyro-propagated attitudes demonstrated cyclic drift rate errors
about the spacecraft X axis. The cycle had an orbital and a diurnal component and varied with the spacecraft-
commanded roll attitude. The orbital peak-to-peak drift rate errors were typically 1° per hour. This effect could not

be attributed to an error in any of the gym calibration terms and was large enough at times to affect the ability of
the DIRBE Fine Aspect system to meet the 3-arcmin requirement.

In addition to this short-term effect, the spin axis drift rates showed considerable variation over the course of the
mission. For operational processing these were corrected by manual adjustments of the X-axis gyro scale factor, as

discussed in Section 2.1. The scale factor corrections ranged from approximately 0.8E-3 to 1.34E-3, corresponding

to variations in drift rate of over 20 ° per hour.

The effect can be most clearly seen by comparison of the gyro-smoothed coarse attitude with the single-frame coarse
attitude. The single-frame attitudes are noisy but reasonably free of long-term systematic errors; the gyro-smoothed
attitudes are smooth but show the effects of propagation errors.

To illustrate the various effects of orbital frequency and spacecraft attitude, we have chosen a day that included
spacecraft roll slews (December 18, 1989, which included slews from the nominal 4° to 8° and 2° at intervals of a
few orbits). The X-axis calibration was chosen to minimize the average drift rate. The gyro-smoothed attitudes were

integrated for 45 minutes. Figures 3a through 3c show the azimuth (X-axis), roll, and pitch components of the
gyro-smoothed vs. single-frame comparison on this day. The azimuth and roll plots clearly show the variations in

the gyro propagation errors over the course of the day.

The cause of this effect was discovered during a test run on the December 18 data. The observed drift variations
prompted an investigation of possible external causes for the drift rate variations. A cursory examination of the gyro
baseplate temperatures, available from the spacecraft telemetry data base, revealed that they also had an orbital cycle
and varied according to the spacecraft roll angle. The effect of the roU slews wag to increase the temperature range
to about 4 °. It was a simple matter to show that the azimuth drift rate errors correlated extremely well with the

baseplate temperatures. The temperature variations are shown in Figure 4a, and the correlation of drift rate with
temperature on this day is shown in Figure 4b.

After extensive analysis of correlation between the baseplate temperature and the drift rate, the following conclusions

were reached: the effect was consistent throughout the mission, it was linear over the observed range of temperatures
(15-25 °C), the temperature appeared to affect the gyro scale factor rather than the bias term (at the level of 76 PPM

per °C), and there was a time lag of roughly 10 telemetry major frames (320 seconds) between the temperature and
drift rate variations.

The CDAC Attitude pipeline software was modified to include a linear temperature correction to the gyro rates, with
the linear coefficients and the time delay specified as input parameters. One implementation issue was that the

temperature telemetry digitization was fairly coarse (about 0.38 °C); this was resolved by including polynomial
smoothing in the correction algorithm. Figure 4a shows both the raw (plotted points) and smoothed (continuous line)
temperatures.

This correction, in conjunction with the overall gyro calibration, reduced the typical g)To azimuth propagation error
rates to 0.1 ° per hour. Figures 5a, 5b, and 5c show the single-frame vs. gyro-pmpagated differences with the
temperature correction applied. The correction reduced the typical propagation error to less than the noise in the
single-frame solutions in azimuth and roll. The Fine Aspect observation residuals with all corrections applied were
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reduced from 3 arcminutes RMS using 20-min propagations to less than 1.5 arcminutes using 45-rain propagations.
After the correction was incorporated into the COBE Science Data Room (CSDR) Attitude operational procedures,
the apparent X-axis gyro calibration remained stable for approximately 3 months.

In summary, the characterization of the X-axis gyro temperature effect unlocked the full performance potential of
the COBE ground segment gyro calibration and the Fine Aspect system.

4.1 QUALITY ASSURANCE

The operational scenario includes a human intervention step so that the quality of the calibration may be checked

before use in the Attitude Pipeline. The quality assurance procedures rely on the plots as shown in the figures to
verify the improvement in the aspect solution quality:

• Figure 1 shows the Fine Aspect residual distribution with X-axis calibration only and with full
calibration, which includes the control axis gyros.

• Figure 2 shows the attitude discontinuities before and after full calibration.

• Figures 3 and 5 show the single-frame vs. gyro-propagated attitude differences in azimuth, roll,
and pitch errors, before and after the temperature correction.

In addition to its support of aspect determination in the production environment, the gyro calibration is an effective

diagnostic tool. The best example of this is its recent use to document an instability in the spin-axis gyro for 20 days
from Day 16 of 1991. This gyro had been replaced by a backup unit at the time of writing.

4.2 PERFORMANCE RESULTS

Typical results are 120 CPU seconds and 280 I/O operations on a moderately loaded VAX 8800 to process 8 hours
of attitude data with 12-min calibration intervals containing attitude samples at 1-sec intervals.

The performance was optimized by storing each full interval of propagated attitude solutions in memory and
minimizing the I/O operations.

This implementation is fast enough for closed loop calibration to become possible--the Gyro Calibrator may write
a file of partial results per interval that the Pipeline Gyro Propagator may read, especially if a gyro is unstable on
the scale of a calibration interval.

SUMMARY AND CONCLUSIONS

This algorithm has been adapted for use on a mission with a unique attitude profile and in an environment where
the reference attitudes result from the same system as the propagated attitudes. The gyro calibration results have
enabled the overall aspect system to consistently exceed specifications by a comfortable margin, and the
implementation has produced an efficient and flexible calibration capability.
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Evidence of Chaotic Pattern in Solar Flux Through a
Reproducible Sequence of Period-Doubling-Type

Bifurcations

S. Ashrafi and L. Roszman

COMPUTER SCIENCES CORPORATION (CSC)

ABSTRACT

This paper presents a preliminary study of the limits to solar flux intensity pre-

diction, and of whether the general lack of predictability in the solar flux arises

from the nonlinear chaotic nature of the Sun's physical activity. Statistical

analysis of a chaotic signal can extract only its most gross features, and de-

tailed physical models fail, since even the simplest equations of motion for a

nonlinear system can exhibit chaotic behavior.

A recent theory by Feigenbaum suggests that nonlinear systems that can be led

into chaotic behavior through a sequence of period-doubling bifurcations will

exhibit a universal behavior. As the control parameter is increased, the bifur-

cation points occur in such a way that a proper ratio of these will approach the

universal Feigenbaum number. Experimental evidence supporting the appli-

cability of the Feigenbaum scenario to solar flux data is sparse. However, given

the hypothesis that the Sun's convection zones are similar to a Rayleigh-

Benard mechanism, we can learn a great deal from the remarkable agreement

observed between the prediction by theory (period doubling- a universal route

to chaos) and the amplitude decrease of the signal's regular subharmonics.

This paper will show that period-doubling-type bifurcation is a possible route

to a chaotic pattern of solar flux that is distinguishable from the logarithm of

its power spectral density. This conclusion is the first positive step toward a

reformulation of solar flux by a nonlinear chaotic approach.

The ultimate goal of this research is to be able to predict an estimate of the

upper and lower bounds for solar flux within its predictable zones. Naturally,

it is an important task to identify the time horizons beyond which predictabil-

ity becomes incompatible with computability.
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1. INTRODUCTION

An accurate forecast of the intensity of solar flux is a prerequisite to accurate orbit and lifetime prediction for

spacecraft. The orbit lifetime is a function of the atmospheric drag force. The drag depends on the atmospheric
density, which is influenced by the solar flux. Solar ultraviolet and X-ray emissions that directly affect the Earth's

atmosphere are highly correlated with solar flux F10.7 observed on the surface of the Earth. Present density

models, such as Jacchia-Roberts (J-R), Harris-Priester (H-P), and mass spectrometer incoherent scatter (MSIS),

use F10.7 solar flux intensity as the indicator of the potential strength of ionizing radiation (References I, 2, 3, and
4).

Current forecasting methods use statistical models to predict solar flux; for example, the Schatten method used
by Goddard Space Flight Center (GSFC), Marshall Space Flight Center (MSFC), and National Oceanic and At-

mospheric Administration (NOAA) (Reference 5). These models use traditional stochastic analysis (usually
based on structurally random data) to predict solar flux. However, as shown below, the patterns exhibited by the

solar flux data indicate that the dynamical system creating the solar flux signal is inherently chaotic rather than
completely stochastic. Starting with the postulate that solar flux is a chaotic time series, a chaotic model is devel-

oped to reproduce essential features of the solar flux signal.

The solar flux signal is classified in Section 2 through analysis of a few basic descriptive properties. Section 3
presents a possible model for the solar flux signal based upon recently developed nonlinear dynamics concepts of
period-doubling bifurcations and upon the results shown in References 5, 6, 7, and 8.

2. CLASSIFICATION OF SOLAR FLUX SIGNAL

Signals such as the solar flux have been categorized historically as either deterministic (meaning that a model of

the physical system can be constructed and used to predict the particular signal that will occur at a given time from
a signal(s) at a another time) or random (meaning that no model of the physical system can be constructed, but,

rather, that a method can be found to predict the probability that any particular signal will occur at a given time,

based on the history of the signal). These general categories can be divided further, as shown in Figure 1. For

deterministic signals, predictability is achieved by deriving for the model of the system equations of motion for the

signal. For random signals, a statistical analysis of the signal history must be performed and either an existing
statistical theory applied or a new statistical theory constructed.

I

FIgure 1. Categories of Signals in Data Analysis
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Recent research on dynamic systems indicates that the cascade of categorizations shown in Figure 1 is incomplete
and that signals can exist for a system that has a detailed physical model (the system is deterministic), but that the
derived equations of motion cannot be used to predict the signal. Such signals and their systems of origin are
categorized as chaotic. While the lack of predictability in a deterministic system may seem inconsistent, mathe-
matical precision must be separated from the precision of physical observation. When a model is mathematically
deterministic, only one solution to its equations of motion exists for the given initial conditions (Reference 9). To
predict a signal to some specified accuracy, the observer must know the haitial conditions of the system to some
related accuracy; however, one well-defined class of models has equations of motion for which variations beyond
the precision of the observer's knowledge of the initial conditions prevent predictions to a specified accuracy.
Terrestrial weather (to which solar activity is perfectly analogous) is an example of such a chaotic system.

Several statistical functions can be used to analyze the poss_le extent of the chaotic nature of the solar flux signal.
Sections 2.1 and 2.2 present the application of these functions, and Section 2.3 presents some conclusions.

2.1 AUTOCOVARIANCE AND AUTOCORRELATION OF THE SOLAR FLUX

The solar flux data shown in Figure 2 present an example of a statistical time series. By plotting a scatter diagram

•using pairs of values (f, f,+t) of a time series, we can visualize the joint probability distribution P(fi, fi)" For the

solar flux data from Figure 2(a), we obtain the scatter diagram in Figure 3 for lags of t = 0 and t = 27. By

plotting ft + 27 versus ft (Reference 10), this plot shows that the correlation between ft + 27 and ft is positive.

Figure 4 shows the plots of autocovariances, autocorrelations, and autocorrelation errors for 600 shifts. These

plots were generated from more than 4,000 points of the solar flux time series shown in Figure 2Co).

Figures 5(a) and 5('0) show the plots of the power spectra for the solar fl ux data from Figures 2(a) and 2(b), respec-
tively. Figure 6 has the plot of the power spectra of data from Figure 2(a), scaled to have the same horizontal axis

as in Figure 5(b). This plot was scaled to show a global symmetry of the power spectra under time extension.

2.2 FOURIER FILTERING

In the low-pass Fourier filter method, we Fourier-transform the signal and then take the inverse Fourier-
transform, omitting frequencies greater than a specified limit. Using this technique, we can determine what fre-

quencies to disregard for construction of a simple iterative map. Figure 7 contains the solar flux time series for
the period November 1977 to November 1980, and a plot for 27-point rectangular averaging. Figure 8 has plots
from 7- and 27-point triangular averaging. Figure 9 shows a plot of Fourier-filtered solar flux time series with 20
and 50 harmonics retained.

2.3 CONCLUSIONS FROM STATISTICAL ANALYSIS

Looking at the solar flux time series shown in Figure 2(a), it is difficult to see any pattern or structure in the solar
flux data. However, the scatter diagram of Figure 3(b) shows regions where points are clustered together. This
clustering is an indication of correlation between ft and ft +27. Figure 4 has a plot of the autocovariance and
autocorrelation function with its standard error, and shows the small peaks that are separated by exactly 27-day
solar rotations. Additionally, we can see that every 183 days, an anomaly occurs in the autocorrelation function.
This anomaly is probably due to a change of the magnetic latitude of the Earth every 6 months
(% year _ 183 days). To determine if this is a numerical or computational artifact, we also have plotted the
standard error of autocorrelation function. At the particular location of these anomalies, no considerable change
in standard error of autocorrelation function was observed; therefore, these anomalies are dynamical in charac-
ter and are.not produced by computational artifacts. The autocorrelation plots show that the autocorrelation of
the solar flux decreases with increasing time shifts, a characteristic common to chaotic time series.

Comparing Figure 8(a) to Figure 9(19),and Figure 8(b) to Figure 9(c), we can see that 27-point triangular averag-
/ng is equivalent to retaining 20 harmonics in a Fourier low-pass filtered solar flux signal; 7-point triangular
averaging is equivalent to retaining 50 harmonics. This information is useful for constructing an iterative
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manifold (see Section 3) that can reproduce our time series. Figure 10 shows the Fourier spectrum of the auto-
correlation of the time series shown in Figure 8(a), which clearly shows the particular patterns such as the 27-day
periodicity, the 183-day anomaly, and other periodic anomalies.

x10 "'_

5.00

0.00

-5.00

I,lili

i

Figure 10,

1._ 2.00 3.00 4,00 5.00

Fourier-Transform of the Autocorrela-
tion of the Solar Flux Time Series From
Figure 7(a), Showing the Periodicity
Pattern in the Autocorrelation Function

Figure 6 shows the plot of a power spectrum for a timespan that was scaled for another time space. This plot was
done to observe the global symmetry of the power spectra under time extension (a fractal characteristic). Fractal
structures are common to chaotic time series.

Figures 5(a) and 5(b) show the plots of the power spectra for the solar flux data presented in Figures 2(a) and 2(b),
respectively. Many obvious patterns are evident in the power spectra of Figure 5(a); for example, we can clearly
see the peaks for 27-day solar rotation periodicity. One interesting feature of this figure is that, starting from the
midpoint of the spectra (the "glitch" close to the 480 Fourier component), we can find the first largest glitch to the
left at about the 295 Fourier component. If we divide the distance from 295 to 480 by 2, we see the next-largest
downward glitch near the 390 Fourier component. Furthermore, if we divide the distance from the 295 glitch to
the 390 glitch, we will once again find the next-largest glitch. The regular appearance of these glitches demon-
strates successive frequency halving or period doubling for the solar flux signal. In laboratory experiments, period
doubling was observed in several chaotic systems (Reference 11). As with the solar flux signal, noise limited the
number of observed period doublings to only a few. Based upon laboratory experiments, we conclude that period
doubling is a possible route to chaos in the solar flux signal. (Currently, three established routes to chaos have
been found: the Grossmann-Feigenbaum period-doubling route, the Manneville-Pomeau route, and the Ruelle-
Takens-Newhouse route.)

3. INTRODUCTION TO CHAOS IN DYNAMICAL SYSTEMS

This section presents some examples of the various states of chaos.

3.1 EXAMPLES OF CHAOTIC SYSTEMS

Two examples are introduced here. The first one (Rayleigh-Benard) is very similar to the dynamical behavior of
the Sun. The second one (dripping faucet) is a model system for studying the strange attractor of solar flux; be-
cause it exhibits period doubling, it is a good candidate for studying solar flux.

Most scientists know the dynamical behavior of systems in which systems eventually settle into either periodic
motion (limit cycle) or into a steady state (system ceases its motion). However, another important class is called
the chaotic system. This system cannot be represented using standard analytical functions (Reference 12).
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Ourfirstexampleconsidersthedrippingfaucetmodel(seeFigures11,12,13,and14).Inthismodel,waterdrops
fall fromthefaucetatasteadyrate,thedropspassadetector, and the pattern is seen to be periodic. When the

rate of flow is small, the time difference between the drops (At = h÷ _ - tO is constant. As the rate is increased,

two drops fall together over a longer period. Therefore, two periods are associated with this system: one is short,

ZXts,and the other is long, AtL. The sequence of time intervals, then, is ...Ats, AtL, ZXts, AtL. This interval is

called period-two sequence. Longer periodic sequences are possible at a specific flow rate. This sequence can
become irregular and therefore chaotic (Reference 13).

Our second example considers the experiment of L_bchaber and Maurer (Reference 11). In this experiment, a
liquid contained in a small box is heated from the bottom. The important points are as follows:

• The experiment has a controllable parameter, the Rayleigh number, which is proportional to the
temperature difference between the bottom and the top of the cell. The Rayleigh number describes
the stability of a convective flow.

• The system is dissipative. Whenever the Rayleigh number is increased, the transients begin to die
out. For small temperature gradients, heat flows across the cell, but the liquid is static. At a critical
temperature, a convective flow sets in. The hot liquid rises in the middle, the cool liquid flows down
at the sides, and the two convective rolls appear (see Figure 15).

As the temperature difference is increased further, the rolls become unstable in a very spec;_'ic way--a wave starts
running along the roll, as shown in Figure 16(a). As the warm liquid rises on one side of the roll and cool liquid
descends down the other side, the position and the sideways velocity of the ridge can be measured with a ther-
mometer, as shown in Figure 16(19). A sinusoid is then observed, as shown in Figure 17(a); two other ways of
displaying the measurement are suggested by the graphs in Figure 17(o).

The temperature difference is now increased. After the stabilization of the phase-space trajectory,, a new wave is
observed superimposed on the original sinusoidal instability. The three ways of looking at it (real time, phase-
space, and frequency spectrum) are illustrated in Figure 18.

At first it appears that To is the periodicity; however, a closer look reveals that the phase-space trajectory misses
the starting point at To and closes on itself only after 2To. A new band has appeared at half the original frequency
on the frequency spectrum. Its amplitude is small because the phase-space trajectory is still approximately a
circle with periodicity T O.

As the temperature increases slightly, a fascinating thing happens. The phase-space trajectory undergoes the
very fine splitting seen in Figure 19(a).

Three scales are involved here: casual observation reveals a circle with period To; closer scrutiny shows _ with
period 2To; and very close examination shows that the trajectory closes on itself only after 4To. "l"ne same infor-

mation can be read off the frequency spectrum; the dominant frequency is fo (the circle), then fo/2, and finally,
much weaker fo/4 and 3fo/4.

The experiment now becomes very difficult. A tiny increase in the temperature gradient causes the phase-space
trajectory to split on an even finer scale, with the periodicity 2YI'o. ff the noise were not too loud to continue, it

would be expected that these splittings would continue, yielding a trajectory with finer and finer detail and the
frequency spectrum seen in Figure 19(0) with families of weaker frequency components. For a critical value of
the Rayleigh number, the periodicity of the system is 2®T0, and the convective rolls have become turbulent, The

ripples that are running along them show no periodicity, and the spectrum of idealized noise-free experiment
contains infinitely many subharmonics. If increases are made to the temperature gradient beyond this critical
value, further surprises occur. The following section provides a numerical simulation of a simple nonlinear oscil-

lator to provide an understanding of why the phase-space trajectory splits in this peculiar fashion.

In an externally driven pendulum, one can see that for a wide range of initial points, the phase-space trajectory
converges to a limit cycle (trajectory loops onto itself), which for some k -- I% is as shown in Figure 20(a). If not
for the external driving force, the oscillator would have simply come to a stop; as it is, it is executing a motion
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forcedonit externally,independentoftheinitialdisplacementandvelocity.It iseasytovisualizethisnonlinear
pendulumexecutinglittlebackwardjerksasit swingsbackandforth.Startingatthepointmarked1,thependu-
lumreturnsto it aftertheunitperiodTo. However,asthefrictionisdecreased,thesamephenomenonisob-
servedasin theturbulenceexperimentwherethelimitcycleundergoesaseriesofperioddoublingasillustrated
in Figure20(b).

Thetrajectorycontinuestonearlymissthestartingpoint,untilit hitsafter2nTo. Thephase-spacetrajectoryis
gettingincreasinglyhardtodraw.However,thesequenceofpoints1,2,...,2n,whichcorrespondstothestateof
theoscillatorattimesTo,2To.....2nTo,sitsinasmallregionofthephasespace,andit canbeenlargedforacloser
look,asseeninFigure210). Globally,thephase-spacetrajectoriesof theturbulenceexperimentandof the
nonlinearoscillatornumericalexperimentlookverydifferent.However,thesequenceofnearmissesislocaland
looksroughlythesameforbothsystems,asillustratedinFigure21(b).Thismethodofreducingthedimension-
alityofthephase-spaceisoftencalledaPoincar6map.Insteadofstartingattheentirephase-spacetrajectory,we
finditspointsofintersectionwithagivensurface.ThePoincar6mapcontainsall theneededisrformationand
enablesthescientisttoreadoffwhereaninstabilityoccursandhowlargeit is.Bycontinuouslyvaryingthenonlin-
earityparameter(suchasfrictionandRayleighnumber)andplottingthelocationoftheintersectionpoints(inthe
presentcase,thePoincar6surfaceisaline),theresultisthebifurcationtreeseeninFigure22(b).A computer-
generatedexampleof arealbifurcationtreeforasimplechaoticsystemisshowninFigure22(a).Thephase-
spacetrajectoriesthat havebeendrawnarelocalizedsothe treehasa finitespan. Bifurcationoccurs
simultaneouslybecauseit iscuttingasingletrajectory;whenit splits,it doessoeverywherealongitslength.Finer
andfinerscalescharacterizeboththebranchseparationsandthebranchlengths,

Feigenbaum'sdiscoveryconsistsofthefollowingquantitativeobservations:

• Theparameterconvergenceisuniversal(independentoftheparticularphysicalsystem),asshownin
Figure22(c).

• Therelativescaleofsuccessivebranchsplittingsisuniversal(independentoftheparticularphysical
system),asseeninFigure22(d).

Thebeautyofthisdiscoveryisthatif turbulence(chaos)isarrivedatthroughaninfinitesequenceofb/furcations,
thefollowingtwopredictionsresult:

Ai Ei
6 = Lira _ _ 4.6692 a -- Lira _ =- 2.5029

i_tar_¢ Ai+t i_htrge El+ 1

3.2 SENSITIVITY TO INITIAL CONDITIONS (ATTRACTORS)

Here we intend to show that a time horizon exists above which predictions are impossible. To demonstrate this,
we use the dripping faucet attractor (the Hdnon attractor), which contains multiple periodicities in its dynamics.

One of the most important concepts in dynamics of dissipative systems is the presence of attracting sets, or attrac-
tors, in phase space. These are bounded sets where regions of initial conditions asymptote as time increases; that
is, dynamical systems that are conservative do not have attractors. Two examples of attractors are shown in Fig-
ure 23 (Reference 14).

NOTE: The dimensionality of a point attractor is 0 and the dimensionality of a limit-cycle attractor is 1 (it is a

line rather than a point). In general, the dimension of an attractor can be a noninteger fraction or a
fractal attractor; such attractors are called strange attractors. An example of a strange attractor is
shown in Figure 24 and is generated from the Hdnon map (104 successive iterations).

xn+t = A-_ + By .....

Yrt+l m Xn

After a small number of iterates of two trajectories, one computed using single precision, the other computed
using double precision, and both originating from the same initial condition, they are still far apart. This approach
was recently proposed by C. Grebogi.
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(a} (b)

(a) Point Atlzactor: A Damped Harmonic Oscillator-model of a Pendulum.

(b) Limit-cycle AtlractOr: A Van decPol Osci![a_or-model of a circuit Oscillator.

Figure 23. Examples of Attractors
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Figure 24. Example of a Strange Attractor

Attractors that can show chaotic behavior represent exponential sensitivity to initial conditions. Consider two

initial conditions lft>o and If2>o = fl>o + Ie>o. The dynamical evolution gives a final state

If_> t and If2 > t, as shown in Figure 25.

f¢>= 4 =4" I¢ >:

._>o -,-- !J

Figure 25. Exponential Evolution of Two
Near Orbits in Phase Space

After time t, the distance between the two orbits is [e>, = lf2>t - Ifx>,. In the limit [_>o--* o and

t _ large, orbits remain bounded and the difference between the solutions Ie > t evolve exponentially for a
I I

given direction of IE>o. That is, ( Ie>t [ - e_,2 >0. Therefore, the system is Very sensitive to initial condi-

tions and is chaotic. This means that small errors in the prediction can evolve rapidly with time. Thus, there is a
time horizon at which noise and computer roundoff can totally change the dynamics. To illustrate this computa-
tional limit, a _computer experiment is performed on a simple attractor of Figure 24, with A - 1.4 and B = 0.3.

As shown in Figure 24, we have generated 34 to 40 iterates of an orbit starting from an identical initial condition

If_ >o = 0, If_ >o = 0. The computations are identical except that one uses single precision and the other

double precision. Single-precision round-off error is 10-14. Single precision is indicated by squares and double
precision by circles. For every iterate connected with a vector, we see that at the 40th iteration, the magnitude of
this vector is as large as the variables themselves. Consequently, if using a computer that has 10 -14 round-off
error, prediction after the 40th iteration is nothing but a guess if the dynamics we are working with are indeed
chaotic and have a HEnon attractor. This was just an example. In practice, the chaotic attractor of a solar flux
time series should be identified before any meaningful prediction procedure is implemented, which is the goal of
such an approach to solar flux prediction.
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Returning to the H6non map example, we see that after the first iterate, [e>, and le>o are different by an

order of 10 -14 (round off). If in the next iteration, the error doubles (e ln2t -- 2t), then the l e >, and [e > o are

different by an order of attractor size in t - 45 (2'10 "t_ - 1). That is, if the error doubles, it is impossible to

improve prediction. Ewe want to predict the evolution past t - 45 to t -- 90, which is twice as long a predic-

tion; then we should have an accuracy of 10-28, which is 14 orders of magnitude more accurate. Therefore, im-

proving prediction by a factor of two is impossible.

In other words, structural stability (Topological Orbital Equivalence [TOE]) breaks over a time horizon, making

prediction impossible. Therefore, structural stability and computability are inherently incompatible. This is pre-
cisely why weather prediction over a time horizon is impossible. Lorenz' conclusion for weather-generating
mechanisms was that thermally driven convections could make the atmosphere chaotic.

Now, returning to our problem, we have many reasons to believe that multiple interactions in the Sun introduce
nuclear, chemical, electrodynamic, hydrodynamic, and other nonlinearities. It is easy to visualize chaoticbehav-
ior in solar flux because the Sun is like a rotating fluid that introduces turbulence, and its sunspots are similar to
convection rolls. These behaviors introduce chaos just as does the Rayleigh-Benard mechanism. Furthermore,

all atmospheres are really chaotic--even those ionized gases in solar atmosphere that chaotically modulate solar
radio emission.

4. CONCLUSIONS

In May of 1990, we postulated that solar flux is a chaotic time series. This postulation was apparent from many
physical features of the Sun. For example, the Sun is a rotating fluid that introduces turbulence, and most of the
interactions, whether chemical, nuclear, or other, are nonlinear. We have also argued that the pattern in the

logarithm of the power spectrum and the autocorrelation function is a concrete example that solar flux is a
pattern-structured, time series. Therefore, an approach to study solar flux should be through nonlinear chaotic

dynamics.

We have further claimed that a time horizon exists above which predictions are computationally impossible. To

demonstrate this claim, we used the dripping faucet attractor, which roughly resembles the multiple periodicities
observed in the dynamics of the solar flux. We also suggested that the H6non-type attractors provide good candi-
dates for study, although in the absence of a detailed demonstration that strange attractors or ensembles of
strange attractors are really H6non types, this theory remains in the realm of speculation.

Convection rolls were also introduced as models of sunspots that are products of nonlinear interaction (like soil-

tons). These convection roils could be produced in the ionized gases of solar atmosphere, further modulating

(chaotically) the solar flux signal.

We also discovered evidence of a period-doubling type of route to chaos in the behavior of solar flux. In this case,
we observed less power at frequencies that follow the well-known period-doubling bifurcations. This was further
recognized as a new form of order that could be a new route to chaos. We also found evidence of fractal (self-simi-
larity invariance, under contraction and dilation) structure in solar flux that deserves a separate investigation (see

Figure 26).
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ABSTRACT

This investigation concerns the effects on Ocean Topography Experiment

(TOPEX) spacecraft operational orbit determination of ionospheric refraction

error affecting tracking measurements from the Tracking and Data Relay Sat-

ellite System (TDRSS). Although tracking error from this source is mitigated

by the high frequencies (K-ban(t) used for the space-to-ground links and by the

high altitudes for the space-to-space links, these effects are of concern for the

relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due

to the accuracy required for operational orbit-determination by GSFC and to

the expectation that solar activity will still be relatively high at TOPEX launch
in mid-1992.

The ionospheric refraction error on S-band space-to-space links was calcu-

lated by a prototype observation-correction algorithm using the Bent model of

ionospheric electron densities implemented in the context of the Goddard

Trajectory Determination System (GTDS). Orbit determination error was

evaluated by comparing parallel TOPEX orbit solutions, applying and omit-

ting the correction, using the same simulated TDRSS tracking observations.

The tracking scenarios simulated those planned for the observation phase of

the TOPEX mission, with a preponderance of one-way return-link Doppler
measurements.

The results of the analysis showed most TOPEX operational accuracy require-

ments to be little affected by space-to-space ionospheric error. The determina-

tion of along-track velocity changes after ground-track adjustment

maneuvers, however, is significantly affected when compared with the stringent

0.1-millimeter-per-second accuracy requirement, assuming uncoupled pre-

maneuver and postmaneuver orbit determination. Space-to-space ionospheric

refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-

second errors in along-track deita-v determination using uncoupled solutions.

Coupling the premaneuver and postmaneuver solutions, however, appears

likely to reduce this figure substantially. Plans and recommendations for re-

sponse to these findings are presented.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space

Flight Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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1. INTRODUCTION

Continuing improvement of the physical models and mathematical methods of orbit determi-

nation is necessary to meet stringent accuracy requirements for missions such as the Ocean

Topography Experiment (TOPEX). One area for possible improvement is the methods used

to correct the Tracking and Data Relay Satellite System (TDRSS) metric tracking data for the

effects of atmospheric refraction. The Goddard Trajectory Determination System (GTDS)

currently omits correction for such effects on spacecraft-to-spacecraft (S/C-to-S/C) tracking
links.

Goddard Space Flight Center (GSFC) is to provide operational orbit determination support
for TOPEX maneuver planning and evaluation. This is not to be confused with the definitive

orbit determination that will be performed in support of the scientific data analysis. Some

operational orbit-determination accuracy requirements for TOPEX appear to challenge the

current capabilities of GTDS and the TDRSS. This report presents the results of a study con-
ducted to determine whether inclusion of an atmospheric correction for S/C-to-S/C links is
necessary to satisfy TOPEX requirements.

1.1 MOTIVATION.AND OBJECTIVES OF ANALYSIS

The main effect of the atmosphere on S/C-to-S/C relay legs is caused by the free electrons of

the ionosphere, which extend to altitudes above 3000 kilometers (km). To evaluate this ef-

fect, it is necessary to integrate the free electron density along the S/C-to-S/C relay communi-

cation path. An electron density model (the Bent Ionospheric Model, Reference 1) is already

implemented in GTDS (Reference 2), but some expense would be involved in coding the re-
quired numerical integration and in documenting, testing, and certifying the code and the al-

gorithm for operational use. Because the electron density model is expensive to compute, use

of such a correction would also impose an additional burden on Flight Dynamics Facility

(FDF) computer resources. Therefore, before implementing the correction, it is prudent to

study the size of the orbit-determination effects to see whether accuracy requirements for
current or future missions are seriously affected.

Two aspects of the TOPEX mission combine to make it perhaps the only one that, in the near

term, requires the S/C-to-S/C ionospheric refraction correction. First is the stringency of the

orbit-determination accuracy requirements. Second is that the early mission will occur during
the later stages of the current solar maximum period. High solar activity causes the

ionospheric electron-density distribution to increase and to extend to higher altitudes. The

relatively high altitude of TOPEX will not render it completely immune to ionospheric refrac-
tion effects under these circumstances. The effects will be much smaller than the effects on

lower altitude missions, but they must be judged relative to the stringent TOPEX accuracy
requirements.

The two operational orbit-determination regimes in the TOPEX mission scenario (Refer-

ence 3) are distinguished by the tracking coverage and the orbit-determination accuracy re-
quirements. The first regime coincides with the TOPEX mission Assessment Phase. The

second regime combines the Initial Verification and Observation phases of the TOPEX mis-

sion plan. In this paper, the second regime will be referred to as the Observation Phase.
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In the Assessment Phase, TDRSS tracking is planned to consist of 40 minutes (min) per revo-

lution of two-way coherent S-band range and Doppler tracking plus nearly continuous one-

way return link Doppler coverage during the remaining time. Stated accuracy requirements

(References 3 and 4) for this regime consist of premaneuver requirements and postmaneuver
requirements. The former are applicable to orbital quantities determined using tracking

available over arcs of up to several days immediately before each orbit-adjust maneuver. The

latter apply to the determination of changes in the orbit caused by the maneuver, not neces-

sarily to the accuracy of postmaneuver orbit determination. This important distinction is

drawn because of the possibility that some sources of orbit-determination error may cancel in

the subtraction of premaneuver from postmaneuver determinations. Postmaneuver accuracy

requirements must be satisfied using tracking extending no more than 24 hours after the ma-
neuver. Both types of requirements depend on the type of orbit maneuver; that is, "calibra-

tion," "coarse," or "precision."

TDRSS tracking in the Observation Phase is to consist of 40 min per revolution of one-way

Doppler tracking and one 10-rain two-way range and Doppler pass per day. Precision maneu-

vers will continue, at reduced frequency, and the two-way coverage will be enhanced to

40 min per revolution for three revolutions after each such maneuver. The associated prema-
neuver and postmaneuver accuracy requirements are the same as in the Assessment Phase.

An additional requirement for the Observation Phase applies to orbit determination that will

be performed on several-day arcs between the maneuvers. This solution process is required
to contribute less than 225 meters (m) to the prediction of the longitude of equator crossing

30 days after the end of the solution arc.

Table 1 quantifies the accuracy requirements. The accuracies for calibration maneuvers are

those required for calibrations of the 1-Newton thrusters; requirements for calibrations of the
22-Newton thrusters are less stringent. Each number in the "Combined" column (Table 1) is

the minimum of all required accuracies for each quantity; that is, the accuracy that the orbit-

determination system must be able to achieve. All stated requirements are three-standard-
deviation error limits. All orbital quantities involved in these requirements are osculating

quantities.

Of the three sets of accuracy requirements for orbit determination associated with maneu-

vers, the precision requirements pose the greatest challenge to system capabilities. Attaining
these accuracies will be no more difficult in the Assessment Phase than in the Observation

Phase because tracking coverage will be more extensive. The study was therefore performed

using tracking scenarios corresponding to the Observation Phase.

1.2 DESIGN AND DESCRIPTION OFTHE STUDY

TOPEX orbit determination using simulated TDRSS tracking data was performed both with

and without an ionospheric refraction correction. The two sets of results were compared, with

particular attention to the differences in orbital quantities for which there are specific accu-

racy requirements. If these differences are not found to be small compared to the corre-

sponding accuracy requirements, the ionospheric effects will be significant to the mission
orbit-determination accuracy and presumably should be corrected.

This study is based on the assumption that the postmaneuver change determination is to be

performed by subtracting quantities determined using separate premaneuver and
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Table 1. TOPEX Operational Orbit-Determination Accuracy
Requirements

SOLUTION

TYPE

PREMANEUVER

STATUS

POSTMAN EUVER

CHANGE

BETWEEN

MANEUVERS

(OBSERVATION

PHASE)

ORBW PROPERTY

PERIOD, T (ms)

SEMIMAJOR AXIS. a (cm)

ECCENTRICI'r'_, • ( 10-_

INCUNATION, I (10 -e deg)

ARGUMENT OF LATITUDE

(lo -e deg)

PERIOD, 5 T (MS)

SEMIMAJOR AXIS, _ a (cm)

INCLINATION, 6 I (10 -8 deg)

VELOCITY CHANGE ALONG-TRACK

_V= (mm/s)

VELOCITY CHANGE CROSS-TRACK

_Vc(mm/s)

VELOCITY CHANGE RADIAL

&V r (ram/s)

30-DAY PREDICTION OF E-W

POSITION AT EQUATOR

CROSSING (m)

CALIBRATION

(1 nt)

10

1000

5OOO

0.1

10

N/A

COARSE

10

1000

5OOO

5OO

4.0

2O

10

N/A

PRECISION

100

5

1OO

2O

100

0.1

10

2

N/A

COMBINE[

4

100

5

100

50OO

2

20

100

0.1

10

225
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postmaneuver tracking arcs. This is a standard procedure at the Flight Dynamics Facility of
GSFC, but it does not make use of the fact that the spacecraft position is continuous through
the maneuver.

An alternate orbit determination scenario for postmaneuver requirements involves solving

for maneuver thrusting parameters in a unified solution arc, including both premaneuver and
postmaneuver tracking. The results of this study are not directly applicable to this unified
orbit determination scenario. Plausible arguments will nevertheless be made to estimate ion-

ospheric error bounds on along-track velocity change error for this scenario.

A further assumption in the design and analysis of this study is that the effects of ionospheric
refraction on the separate premaneuver and postmaneuver orbit determination solutions are
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not highly correlated under random variations of the tracking schedule and the solar activity.

The ionospheric error in the differences between premaneuver and postmaneuver solutions is

not expected to be systematically less than the ionospheric error in either separate solution.

Because errors in the relatively short postmaneuver arc are expected, in general, to exceed
those in the premaneuver arc, the assumption relieves us of the burden of analyzing a long

premaneuver arc preceding each of our several postmaneuver arcs. This assumption is in-

applicable to other error sources in TOPEX orbit determination (such as gravitational con-

stant error); this implies that overall TOPEX error analysis must be performed with

coordinated premaneuver and postmaneuver arcs (References 5 and 6).

Effects of ionospheric refraction on postmaneuver accuracy requirements were studied using
four 24-hour postmaneuver arcs with simulated tracking data scheduled according to the Ob-

servation Phase postmaneuver tracking requirements. Four arcs were used to attempt to
sample over relevant variables, such as season and orbital orientation. The impact on the

premaneuver accuracy requirements was studied using a single 7-day arc of routine Observa-

tion Phase simulated tracking.

While this analysis may prove that implementation of a full ionospheric correction is neces-

sary for the satisfaction of the TOPEX accuracy requirements, it cannot show it to be suffi-

cient. There are two reasons for this. First, the actual accuracy attainable by an ionospheric

refraction correction model, and thus the fraction of ionospheric error that may remain after
correction, is unknown. Second, the current analysis only treats the ionospheric refraction

contribution to the orbit-determination error. A full orbit-determination error analysis for

TOPEX is beyond the scope of this work.

1.3 PREVIOUS STUDIES

References 7 and 8 describe previous studies of the orbit-determination effects of the S/C-to-

S/C refraction correction. Using real and simulated tracking data for the Earth Radiation

Budget Satellite, Solar Maximum Mission, and Solar Mesosphere Explorer at both high and
low solar activities, these studies investigated the effects of uncorrected ionospheric refrac-

tion on orbit determination for spacecraft in the 500- to 600-km altitude range. For the lower

end of this altitude range, this effect was shown to produce ephemeris differences of 30 to

100 m over 34-hour definitive arcs at maximum solar activity. Effects of this size significantly

hinder the continuing effort to improve orbit-determination precision and accuracy. There
are, however, no near-term missions in this altitude range whose accuracy requirements are

threatened by this level of error. References 7 and 8 do not establish an operational need to

correct for the S/C-to-S/C ionospheric refraction.

A somewhat fuller discussion of the methods of the current study may be found in Refer-
ence 9.

1.4 ORGANIZATION OFTHE PAPER

The remainder of this paper comprises three sections. Section 2 describes the methods of

analysis, including tracking data simulation. Section 3 describes and discusses the results.

Section 4 describes the conclusions and makes recommendations for implementing the

ionospheric refraction correction and for TOPEX orbit-determination techniques.

613o-14 213



2. ANALYTICAL METHODS

2.1 ORBIT AND TRACKING DATA SIMULATION METHODS

The data simulation methods comprise the orbital initial conditions, the orbit propagation

methods, the measurement simulation methods, and the choice of tracking data distribution.

Orbital initial conditions at several epochs were based on the reference set of Brouwer mean

elements given in Table 2. These elements were adapted from Reference 10 and, according to

that source, represent a frozen orbital shape (i. e., there is no secular change in eccentricity

and mean anomaly). The goal of TOPEX orbit adjustment maneuvering will be to keep the

groundtrack on a 10-day, 127-orbit repeat cycle. To provide initial conditions for orbit simu-

lations at epochs other than June 6, 1992, therefore, only the Brouwer mean longitude of as-

cending node and the mean anomaly needed to be changed. The former was regressed by

2.2005 deg/day. The latter was advanced exactly 12.7 revolutions per rotation of the Earth,

relative to the regressing TOPEX orbital plane.

Table 2. Brouwer Mean Orbital Elements in the TOD Coor-

dinate System at 0000 UTC of Epoch Date

ORBITAL ELEMENT

EPOCH, to

SEMIMAJOR AXIS, ao (km)

ECCENTRICITY, eo

INCLINATION, io (deg)

RIGHT ASCENSION OF NODE, Qo (deu)

ARGUMENT OF PERIGEE, _o (deg)

MEAN ANOMALY, Mo (deg)

VALUE

6/21/1992

7713.3869

0.0011399

64.606

139.552

270

0
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Four 24-hour sets of tracking data were simulated. The epochs were chosen so that the four

data sets would sample over the first quadrant of the angle between the Sun and the orbit

normal and provide some relevant seasonal variation as well. The simulation epochs and Sun

angles are given in Table 3. The orbit simulation for the 7-day arc also used the October 27,

1992, epoch. Note that monthly ionospheric maps (Reference 11) at fixed solar activity show
generally high ionospheric densities in October and low densities in June. All orbit simula-

tions were initialized at 0000 UTC of the dates shown in Table 3.

The optional methods and models used in the orbit and tracking simulations are presented in

the "TOPEX Simulation" and "Relay Orbit" columns of Table 4. Observation simulation

used the TDRSS version of the Research and Development (R&D) GTDS Data Simulation

program. The measurement noise amplitudes were chosen to resemble the actual high-

frequency noise observed in TDRSS measurements. It was not possible to include either

ionospheric or tropospheric refraction effects in the data simulation because of R&D GTDS
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Table 3. Simulation Epoch Dates, Sun-to-Orbit-Normal Angles,

and Tracking Intervals

EPOCH DATE (0000 UTC) SUN ANGLE (deg) TRACKING PERIOD (UTC)
i ii ill i II

JUNE g, 1992

OCTOBER 3, 1992

OCTOBER 17, 1992

OCTOBER 27, 1992

OCTOBER 27, 1992

2.8

30.5

61.5

89.9

89.9

0(3h 11m 38s-24 h 11 m37 =

01h 01 m 33s-24 h 19m 48s

130n 23 m 08s-24" 13m07=

01h 27 m 17L25 . 05 m 18s

00h 59 m 501-NOVEMBER 2, 23h 59 rn 40_
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software limitations. These and other sources of orbit error were included by choosing differ-

ent options for the GTDS solution process than were used in simulation, as discussed in Sec-
tion 2.2.

Every effort has been made to simulate tracking schedules representative of the actual track-

ing scenarios planned for the Observation Phase, as described in Section 1.1. The basic ele-

ment of simulated tracking coverage per spacecraft revolution is one 35-rain pass, through

either TDRS-East(E) or TDRS-West(W), of one-way downlink S-band Doppler (TD1S)

tracking. The definition of tracking visibility was usually restricted to times when the tracking

relay elevation, as seen from the user spacecraft and measured relative to the local horizontal

plane, was greater than 5 deg. The mean ionospheric correction is a strong function of this

relay elevation (Reference 9), and, to control the effect of ionospheric corrections, atmo-

spheric editing on this variable will be advisable for operational TOPEX orbit determination.

Variations on this theme include substitution of 20 min of two-way coherent tracking (TD2S

and TR2S) for 35 min of one-way; allowing tracking at relay elevations down to 0 deg; and

phasing the tracking pass at the beginning, middle, or end of the visible interval.

Data simulation for the four 24-hour postmaneuver arcs was scheduled according tO the fol-

lowing rules:

• The observation interval and the Doppler count interval are both 10 seconds (sec).

The first three passes consist of 20 min each of two-way range and Doppler track-

ing.

One 35-min pass of one-way Doppler tracking occurs in each succeeding revolu-

tion.

Fifty percent of the passes begin at the beginning of the restricted visibility interval,

25 percent end at the end; the remainder are centered in the visible interval.

TDRS-E and TDRS-W are used at random after the first three revolutions.

Visibility is generally cut off at 5-deg relay elevation, but one two-way pass and one

one-way pass per day extend to zero elevation.
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Table 4. Models and Parameters for Data Simulation and

Orbit Determination (1 of 2)

MODELS AND
PARAMETERS

INTEGRATION TYPE

COORDINATE SYSTEM

OF INTEGRATION

INTEGRATION STEP

SIZE

GEOPOTENTIAL

MODEL

ATMOSPHERIC

DENSITY MODEL

COEFFICIENT OF

DRAG (Co)

DRAG SCALING

ADJUSTMENT

PARAMETER (_1)

SOlAR/LUNAR

EPHEMER!DES

SOLAR/WNAR

GRAVITATION

SOLAR REFLECTIVITY

COEFFICIENT (CR)

SOLAR PRESSURE

CONSTANT

POLAR MOTION

SPACECRAFT

CROSS-SECTION

SPACECRAFT MASS

TOPEX SIMULATION

12TH-ORDER FIXED-

STEP COWELL

TRUE OF REFERENCE

60sec

GEM-9 (21 x 21)

N/A

N/A

DE-118

YES

1.2

0.00457

NO

17.0 M2

265O kg

TOPEX DC

12TH-ORDER FIXED-

STEP COWELL

TRUE OF REFERENCE

60 $ec

GEM-L2A (21 x 21)

HARRIS-PRIESTER,

F =225, N =6

2.2 C'f-DAY ARC)

0.0 (1-DAY ARCS)

SOLVE-FOR, IN

7-DAY ARC

ONLY

DE-118

YES

0.8

0.00457

NO

17.0 M2

265O kg

RElAY ORBIT

12TH-ORDER FIXED-

STEP COWELL

TRUE OF REFERENCE

600 sac

GEM-I_.A (8 x 8)*

N/A

N/A

N/A

DE-118

YES

1.4

0.00457

NO

40.0 Mz

2OOOkg

* Exoept GEM-9 (8 x 8) used for October 3 data simulations only.
6130-14
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Table 4. Models and Parameters for Data Simulation and

Orbit Determination (2 of 2)

MODELS AND
PARAMETERS

RELAY INCLINATION

ERROR

RELAY MEAN

ANOMALY ERROR

ESTIMATED

PARAMETERS

DC CONVERGENCE

PARAMETER

DC EDITING

IONOSPHERIC

CORRECTION

TROPOSPHERIC

CORRECTION

ANTENNA MOUNT

CORRECTION

ATMOSPHERIC

EDITING

TR2S NOISE

STANDARD

DEVIATION

"rD2S NOISE

STANDARD

DEVIATION

TDIS NOISE

STANDARD

DEVIATION

TOPEX SIMULATION

N/A

N/A

N/A

NONE

NONE

NONE

BY SCHEDULE

(SEE TEXT)

1M

0.01 Hz

0.01 Hz

TOPEX DC

+27 x 10-s deg ('TDRS-E)

-27 x 10 -e deg ('rDRS-W_

+41 x 10-e deg (TDRS-E)

-41 x 10 -e deg (TDRS-W)

STATE, LOCAL OSCILLATOR

BIAS AND DRIF'[, DRAG

SCALING (01,7-DAY

- RELAY ORBIT

N/A

N/A

N/A

ONLY)

0.0001

3_

BENT MODEL OR

NONE

NONE

NONE

NONE

30M

0.25 Hz

0.25 Hz

N/A

NIA

NIA

N/A

N/A

N/A

N/A

N/A

N/A
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Two passes are scheduled in the first 2 hours, as if to support immediate

postmaneuver orbit determination.

On the assumption that orbit adjustment maneuvers will be scheduled to end at times when

tracking is possible, the putative maneuver times (no actual thrusting) were taken to coincide

with the first simulated observation (see Table 3). These were also the eventual DC solution

epochs. The intervals of tracking data collection were ended just 24 hours thereafter.

Data simulation for the 7-day routine orbit-determination arc was scheduled according to the

same rules, with the following exceptions:

Each day, one 20-min two-way pass replaces a regular 35-min one-way pass, not

necessarily at the beginning of the day.

The data interval for one-way passes is 30 sec (although the Doppler count interval

was maintained at 10 sec).

All passes commence at first visibility (because the precise phasing of individual

passes within a 7-day arc is unimportant).

A total of 17 passes (2 or 3 each day) begin at 0-deg relay elevation, and the rest at

5 deg. On days 2, 4, and 6, one of the 0-deg passes is a two-way pass.

The 168-hour interval of tracking data collection was begun at 0000 UTC of October 27,

1992. The putative maneuver was at 0000 UTC, November 3.

2.2 ORBIT-DETERMINATION METHODS

Spacecraft orbit determination for this study used IONPRO/GTDS 2.1. This version differs

from GTDS principally in that it has the optional capability to calculate and apply corrections

to TDRSS tracking observations for the ionospheric refraction on the S/C-to-S/C legs of the

relay communication path. Batch least-squares orbit determination was performed by the

Differential Correction (DC) program within IONPRO/GTDS.

The orbit-determination options used in this study are presented in the "TOPEX DC" col-

umn of Table 4. For each of the five arcs, DC solutions were generated twice, once with and

once without observation correction for ionospheric refraction, but with no other differences
in the solution conditions.

In the comparison of orbit solutions generated with and without ionospheric error, the effects

of small variations in input measurements cancel to first order. The nonlinearities caused by

dynamic editing differences spoil this cancellation. In an attempt to provide a realistic set of

background observation residuals influencing the dynamic editing and its variation with

ionospheric effects, several sources of background orbit-determination error were built into

both the ionospherically corrected and uncorrected DC solutions. Comparison of the
"TOPEX Simulation" and "TOPEX DC" columns of Table 4 reveals those error sources.

Geopotential modeling error (including central gravitational constant) is represented by the
difference between the Goddard Earth Models GEM-L2A and GEM-9, both truncated at

order and deg 21. Atmospheric density modeling error and tropospheric refraction error are

6130-14 218



not included. Solar radiation force modeling error is represented by a difference in reflec-

tivity of 50 percent. Measurement noise error is discussed in Section 2.1.

Except for the October 3 arc, all TDRSS relay orbits were generated with options identical to

those used in data simulation (see the "Relay Orbit" column of Table 4). Relay orbit error is

simulated in this study by varying the initial TDRS relay Keplerian elements from those with

which the tracking data were simulated. An oscillatory cross-track error of amplitude 19.9 m

was obtained by changing the TDRS-E (-W) inclination by + 0.000027 deg (-0.000027 deg).

Approximately constant along-track errors of 30.2 m were obtained by changing the TDRS-E

(-W) mean anomaly by + 0.000041 deg (-0.000041 deg). The data simulations for October 3

were inadvertently performed using GEM-9 rather than GEM-L2A for the relay geopoten-

tial. This introduces additional relay orbit error in the solutions for this arc, which is domi-

nated by along-track position error that grows linearly from 0 to 12 m by the end of the arc.

Since available tracking data simulation software lacks the S/C-to-S/C ionospheric refraction

capability, ionospheric refraction error was implemented in this study by applying an

ionospheric correction to observations that were simulated without the effect. Contrary to

the situation that exists during actual orbit determination, the solution obtained here without

ionospheric refraction correction is the closest to the true orbit, and the solutions obtained

with ionospheric refraction correction are degraded in accuracy. The sign of the orbit-

determination error may be opposite to that caused, in reality, by failing to correct real obser-

vations, but there is no reason to expect the magnitude to differ.

The observation standard deviations appearing in the "TOPEX DC" column of Table 4 are

those whose inverse squares define the weight factors for least-squares estimation. These

values are currentlyused for operational orbit determination. The value used for the one-way

measurements (TD1S) has been used for Cosmic Background Explorer (COBE) operational

support using an onboard ultra-stable oscillator, as planned for TOPEX.

The convergence tolerance used, 0.0001, is only 2 percent of the standard usage for opera-
tional orbit determination. This value was used to minimize the effects of differences in de-

gree of convergence between ionospherically corrected and uncorrected solutions.

2.3 REFRACTION CORRECTION METHODS

The current method of GTDS atmospheric correction of TDRSS tracking observations is to

correct all ground-to-space legs for both the ionosphere and the troposphere, except that the

ionospheric correction is justifiably ignored for K-band legs because of the inverse-square

dependence on frequency. Ionospheric correction is thus applied to the TDRS-to-

transponder legs of Bilateration Ranging Transponder System (BRTS) data and not at all to

user tracking data. This neglect of refraction correction for the S/C-to-S/C legs is justifiable

for the troposphere, which extends only to tens of kilometers, but not, in general, for the iono-

sphere. IONPRO/GTDS, in contrast, uses one of two algorithms described in Reference 12

to evaluate the electron-density line integrals along the S/C-to-S/C communication paths.

The electron-density function, ne, for the integrals is provided by the existing GTDS imple-

mentation of the Bent Ionospheric Model (Reference 2).

In the current study, numerical integration of the electron density is performed using

Gaussian integration (Method I of Reference 2). The integral is divided at 3000-km altitude
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into two segments. The lower altitude segment is evaluated using 20-point Gaussian integra-
tion in the path variable, s. The segment above 3000-km altitude is extended to infinity in the

direction beyond the relay spacecraft and evaluated by three-point Gaussian integration in
the variable

u = exp (-ks s) (1)

where k5 is the inverse scale height of the top layer of the segmented Bent model profile.

2.4 SOLAR ACTIVITY SIMULATIONS

The electron-density distribution in the ionosphere is highly dependent on the level of solar

activity. As described by the Bent model, it depends primarily on the monthly value of

12-month smoothed solar flux, F12, on the daily solar flux, F, and, to a lesser degree, on the

12-month smoothed sunspot number, R. Values of these parameters were carefully chosen
for use in the ionospherically corrected DCs to provide a moderately pessimistic estimate of

an extreme ionospheric state in the early TOPEX mission time frame.

A recent prediction (Reference 13) for the two-standard-deviation upper limit ofF12 for June
1992 (that is, 169), was used for all five DC arcs. With this value of F_2, the sunspot number

(Reference 14) was derived by solving

F1: = 63.75 + 0.728 R + 0.00089 R2 (2)

Solar flux values around the peak of cycle 19, the previous cycle that most closely resembles

the rising portion of the current cycle 22, were studied. In August, 1960, 4 months after cycle

19 had decayed to F12 of 169, an apparent solar storm produced a peak daily solar flux of 250

(Reference 15). That daily solar flux value was used for each of the four 24-hour

postmaneuver arcs. The daily fluxvalues for August 17-23, 1960, were used for October 27 to
November 2, 1992, in the 7-day routine orbit-determination arc. Those F-values, specified in
Table 5, have a mean of 215.9.

2.5 EVALUATION METHODS

As stated in Section 1, the basic method of determining the orbit-determination effects of

ionospheric refraction was by comparing orbit-determination results obtained without an

ionospheric refraction correction to similar results obtained with exactly the same tracking

data, but now applying the ionospheric refraction correction. Osculating Keplerian period,

semimajor axis, eccentricity, and inclination were calculated from the ephemeris file output
of definitive solution trajectories; differences were calculated as functions of time within the

definitive arc. The radial, cross-track, and along-track components of velocity differences

were obtained from the GTDS ephemeris comparison (COMPARE) program.

Since the TOPEX premaneuver and postmaneuver accuracy requirements apply only to the

maneuver time, it would seem necessary only to calculate the ephemeris comparisons at a
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Table 5. Solar Activity Simulations

F12 I F I

24-HOURORBITDETERMINATIONARCS

JUNE 6, 1992 169.0 250.0 125.4
OCTOBER 3, 1992 169.0 250.0 125.4
OCTOBER 17, 1992 169.0 250.0 125.4
OCTOBER 27, 1992 159.0 250.0 125.4

7-DAY ORBIT DETERMINATION ARC

OCTOBER 27, 1992 169.0 247.0 125.4
OCTOBER 28, 1992 169.0 250.0 125.4
OCTOBER 29, 1992 159.0 234.0 125,4
OCTOBER 30, 1992 169.0 219.0 125.4
OCTOBER 31, 1992 169.0 201.0 125.4
NOVEMBER 1, 1992 1690 189.0 125.4
NOVEMBER 2, 1992 169.0 171.0 125.4
MEAN 159.0 215.9 125.4
STANDARD DEVIATION 0.0 30.1 0.0

6130-14

solution epoch coincident with this time. Velocity differences, however, vary sinusoidally on

the orbital period, while eccentricity and semimajor axis differences have been found to vary

more rapidly. If the maneuver is taken to be at some random time before the beginning of the

postmaneuver tracking arc, these variations will be sampled over. A single-point comparison

may produce values less than the sample averages. To guard against this possibility, Keplerian

and velocity comparisons of ephemerides need to be sampled over at least an orbital revolu-
tion near epoch. Since the character of the tracking data in the postmaneuver scenarios dif-

fers systematically between the initial revolutions of the arc and the later ones, it is

unnecessary, and potentially misleading, to extend this sampling over the entire definitive arc.

Analytical emphasis was therefore placed on root-mean-squares (rms) over one-orbit sam-

ples of ephemeris comparisons; that is, the first 112 min of the postmaneuver arcs and the last

112 min of the premaneuver arc. Single-point samples at epoch and full definitive samples

were, however, also calculated for comparison purposes. One-orbit samples were taken at
l-rain sampling intervals, whereas longer samples were taken at 10-min sampling intervals.

Detailed analysis of the accuracy requirement for premaneuver determination of the osculat-
ing argument of latitude was not performed. The results strongly indicate that this require-

ment is not in any way challenged by ionospheric refraction error. Analysis (see Reference 9)

of the 30-day equator crossing prediction requirement, using orbit determination results for

the 7-day arc of simulated tracking data, shows that ionospheric refraction has a negligible
impact. Because of space limitations, that analysis will not be discussed in this paper.
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3. RESULTS AND DISCUSSION

Table 6 summarizes the corrected and uncorrected DC solutions for each of the five orbit-

determination arcs. The first four pairs of solutions represent the four 24-hour postmaneuver

arcs, with epochs at the beginnings of the arcs specified in Table 3. The last pair of solutions
represents the 7-day arc with DC epoch at the end of the arc, 0000 UTC, November 3, 1992.

The results of definitive parallel ephemeris comparison between the corresponding corrected

and uncorrected solutions are listed in Table 6 under the "Maximum Compare Position Dif-
ferences" column.

The numbers of accepted observations shown in Table 6 reflect the absence of DC editing of

two-way observations in the 24-hour arcs, except for 44 Doppler observations edited in only
the corrected solution for October 27. Although editing of a single one-way observation did

occur on October 3, the same rejection was made in both corrected and uncorrected solu-
tions. Thus, October 27 is the only 24-hour solution to partake of the nonlinear effect of a DC

editing difference. There is also a difference in the selection of two-way Doppler observa-
tions in the 7-day arc.

In keeping with the fact that the refraction correction is applied to unrefracted simulated ob-
servations, the corrected solutions generally show inferior fit to the tracking data, as revealed

by larger weighted rms residuals and residual standard deviations.

The definitive maximum along-track position differences at the far right of Table 6 do not

exceed 2.1 m for the long arc (and are still less for the premaneuver arcs). Thus, the

ionospheric effect on determination of argument of latitude is in the neighborhood of
16 x 10-.6deg. The requirement for determination of this quantity will, therefore, not be im-

pacted by ionospheric refraction error and will not be considered further.

Table 7 summarizes the differences between corrected and uncorrected solutions in the quan-

tities related to the remaining TOPEX orbit-determination accuracy requirements. Shown

are the actual differences at epoch for each solution and the rms values over one-orbit and full

definitive samples as described in Section 2.5. The ionospheric refraction effects on period

and eccentricity are smaller by two orders of magnitude than any accuracy requirement. The
inclination discrepancies are less than 4 percent of the minimum postmaneuver requirement,

except for the October 27 result (13 percent of the requirement) associated with the

10-percent TD2S editing difference. The inclination error for_the 7-day arc is only 3 percent
of the precision premaneuver inclination accuracy requirement. The rms of the four one-

orbit postmaneuver samples of discrepancy in semimajor axis, 1.13 centimeters (cm), barely

exceeds 5 percent of the 20-cm accuracy requirement. Premaneuver semimajor axis discrep-

ancies are smaller than that, and also less than 0.3 percent of the corresponding premaneuver

accuracy requirement.

The situation revealed by Table 7, with regard to determination of postmaneuver velocity

changes, contrasts with that seen for Keplerian elements. The RMS postmaneuver effect on

cross-track velocity change determination is only 7 percent of the accuracy requirement,

while the premaneuver effect on the same determination is smaller. The RMS postmaneuver

effect on radial velocity change determination, however, is 30 percent of the accuracy re-

quirement, and the single premaneuver sample is 45 percent thereof. The along-track
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velocity errors exceed the accuracy requirement by 50 to 200 percent, including the pre-
maneuver result.

The last column of Table 7 represents the first term on the right side of the equation

Aa Ar
AVa - (3)

2144 sec 1072 sec

where Ar is the error in radial position. This equation is the differential form of the vis viva

equation for the osculating semimajor axis, specialized to TOPEX in the circular orbit ap-

proximation. The results for AVa in Table 7 are clearly dominated by the second term. If,

however, Equation (3) is applied to changes in quantities computed just before and just after a

maneuver, while using the unified orbit determination scenario that does not permit a posi-

tion discontinuity, the second term exactly cancels (Reference 5), so that

dAa'
_AVa' - (4)

2144 sec

where 6 signifies the postmaneuver-premaneuver difference and the primes remind us that

the subtracted quantities are not those of the independent orbit determination scenario. Un-

less the unified orbit determination scenario actually increases the ionospheric effect on de-

termination of semimajor axis changes, 6AVa' will be of the order of the first term in

Equation (3) from the original orbit determination scenario. In Table 7, this term averages,

for the 24-hour arcs, about 5 percent of the accuracy requirement.

The central processing unit (CPU) time for the corrected 7-day DC was 53.3 rain, compared
with 13.8 rain without ionospheric correction. This difference can easily be cut by a factor of

3 or 4, by changing IONPRO/GTDS so as not to recalculate corrections every DC iteration.

It is nevertheless clear that operational use of this correction for TOPEX orbit determination

may pose a significant computational burden.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The analysis of the orbit-determination effects of the S/C-to-S/C ionospheric refraction cor-
rection shows that, although the effects are small in an absolute sense, they are in some cases

comparable with the stringent TOPEX accuracy requirements. Most notably, ionospheric

refraction effects cause along-track velocity change errors of up to triple the postmaneuver

accuracy requirement. They also cause radial velocity change errors of 20 to 45 percent of the

accuracy requirement. On the other hand, ionospheric refraction effects are at the 10 percent
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level, or less, relative to Keplerian element premaneuver and postmaneuver accuracy re-
quirements. These conclusions are only strictly applicable to the independent postmaneuver
orbit determination scenario and to the Observation Phase.

Conclusions about the unified premaneuver and postmaneuver orbit determination scenario

are somewhat conjectural. A very strong conjecture is that the semimajor axis change deter-

mination in this scenario is no more sensitive to the ionosphere than in the other scenario. In

that case, along-track velocity change errors from ionospheric refraction will be reduced to

5 percent of the accuracy requirement. Therefore, the radial velocity change errors may be
the most significant.

This analysis does not determine how well the ionospheric error can be reduced by a correc-

tion algorithm using the Bent model. A reduction to the 30 percent level is a reasonable

guess. At that level, residual ionospheric error may still account for 50 to 100 percent of the

allowable error in along-track velocity change.

4.2 RECOMMENDATIONS

This analysis shows that the effects of neglected ionospheric refraction error on TOPEX orbit

determination accuracy using a serious candidate solution scheme are very significant relative
to that mission's stringent requirements, it certainly implies that this error source is a signifi-

cant one for orbit determination using the TDRSS in the new decade, and must not be

slighted in error analysis.

By employing an alternate orbit determination scenario, it may be possible to avoid immedi-

ate implementation of a spacecraft-to-spacecraft ionospheric correction algorithm for GTDS

use in TOPEX orbit support. Reliable proof of this remains to be established and should be
pursued urgently. It is certainly not possible to meet the current TOPEX accuracy require-

ments using the FDF standard maneuver support scenario (with separate premaneuver and

postmaneuver arcs) lacking such a correction. Unfortunately, global error analysis (Refer-

ences 5 and 6) seems to indicate this goal to be out of reach even with accurate ionospheric
correction.

Research into methods of ionospheric correction and into its orbit determination effects
should be pursued so that an accurate, efficient correction may be employed, at the latest,

during the next solar activity maximum. The errors in candidate ionospheric correction algo-
rithms must be analyzed to establish the level of residual ionospheric error. Orbit determina-

tion analysis using real tracking data from COBE, now that it has ceased to vent helium gas,

will be useful in this last endeavor. Not only does that mission provide one-way downlink

Doppler measurements with the onboard ultrastable oscillator, but its relatively high altitude

mitigates the impact of orbit determination error on the evaluation of observation correc-

tions. TOPEX tracking data and precision orbit determination results will eventually be of
use in this evaluation, as well.

It is desirable to have the accuracy of the ionospheric correction approach 20 percent. The

inherent unpredictability of the ionosphere probably precludes a more accurate correction.

The computational burden of ionospheric correction is significant, approximately a factor of

2 in CPU usage, with most of the increase coming from evaluating the Bent model. These two
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considerations argue in favor of modernizing the ionospheric model, a not inconsiderable
effort.
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ABSTRACT

The uncertainty in the geopotential model is currently one of the major error

sources in the orbit determination of low-altitude Earth-orbiting spacecraft.

This paper presents the results of an investigation of different geopotential

error models and modeling approaches currently used for operational orbit

error analysis support at the Goddard Space Flight Center (GSFC), with em-

phasis placed on sequential orbit error analysis using a Kalman filtering algo-
rithm.

Several geopotential models, known as the Goddard Earth Models (GEMs),

have been developed and used at GSFC for orbit determination. The errors in

the geopotential models arise from the truncation errors that result from the

omission of higher order terms (omission errors) and the errors in the spheri-

cal harmonic coefficients themselves (commission errors). At GSFC, two error

modeling approaches have been operationally used to analyze the effects ofgeo-

potential uncertainties on the accuracy of spacecraft orbit determination -- the

lumped error modeling and uncorrelated error modeling.

The lumped error modeling approach computes the orbit determination errors

on the basis of either the calibrated standard deviations of a geopotential

model's coefficients or the weighted difference between two independently

derived geopotential models. The uncorrelated error modeling approach treats

the errors in the individual spherical harmonic components as uncorrelated

error sources and computes the aggregate effect using a combination of indi-
vidual coefficient effects.

The study presented in this paper assesses the reasonableness of the two error

modeling approaches in terms of global error distribution characteristics and

orbit error analysis results. Specifically, this study presents the global distri-

bution ofgeopotential acceleration errors for several gravity error models and

assesses the orbit determination errors resulting from these error models for

three types of spacecraft--the Gamma Ray Observatory, the Ocean Topogra-

phy Experiment, and the Cosmic Background Explorer.

* This work was performed for the National Aeronautics and Sp,_ce Administration (NASA)/Goddard Space
Flight Center (GSFC) under Contract NAS 5-31500.
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1. INTRODUCTION

The Earth's geopotential field, V, is commonly represented by the following spherical har-

monic equation:

= n ]1V = ¢t 1 + _ _ (Re/r) n Pnre(sin ¢) [Snm sin m2 + C m cos m2 (1)
r n=2 m=O

where It -- gravitational constant times mass of the Earth

r

Re

= spacecraft orbital radius

= radius of the Earth (usually taken as the equatorial radius)

Pnm = associated Legendre function

S_, C m = harmonic coefficients of degree n and order m

q_, 2 = geocentric latitude and east longitude

Of computational necessity, the geopotential field represented by Equation (1) is truncated at
some finite degree and order. Over the years, several progressively more accurate geopoten-

tial models, known as the Goddard Earth Models (GEMs), have been developed and used at

Goddard Space Flight Center (GSFC) for satellite orbit determination. Although the geopo-

tential modeling accuracy has improved, it remains one of the major error sources in the orbit
determination of low-altitude Earth-orbiting spacecraft. The errors in the geopotential force

models arise from the truncation errors resulting from the omission of higher order terms

(omission errors) and the errors in the spherical harmonic coefficients (commission errors).

In deriving each GEM, a covariance matrix associated with the spherical harmonic coeffi-

cients (or the calibrated form of this matrix) can generally be used to analyze the effects of

commission errors on spacecraft orbit determination. However, because of the large size of

the matrix, it is computationally expensive and, thus, is impractical for operational use.

As an alternative, a computationally simpler modeling approach, known as the lumped error
model (Reference 1), has been used at GSFC for orbit error analysis using the batch-weighted

least-squares estimation method. A second approach currently being used in sequential error
analysis, the uncorrelated error model, treats each spherical harmonic component as uncorre-

lated and considers each to be an independent error source.

1.1 LUMPED ERROR, MODEL

In the lumped error modeling approach (LEMA), the orbit determination errors that result

from the geopotential model errors are computed by summing algebraically the contributions

of the individual spherical harmonic coefficient errors. The algebraic summation assumes

that the individual harmonic coefficient errors are fully correlated. This approach also results
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in better computational efficiency by having to evaluate only one variational equation to ac-

count for the geopotential errors contributed from all harmonic coefficient error sources

(Reference 2). The error models used for this approach commonly belong to two categories:

gravity difference and standard deviations.

In the first category, an error model is constructed by taking the weighted difference between

two independently derived geopotential model coefficients--the gravity difference error

models. The rationale for such an approach is that, if two geopotential models are independ-

ently derived, then the weighted average of the two model coefficients may be closer to the

"truth," and the weighted difference between the two models can be regarded as a measure of

the error for one of the models. However, operationally, the gravity difference models have

been usually generated based on differencing two somewhat correlated geopotential models,

for example, GEM9-GEM7 gravity difference model.

In the second category, the estimated errors of the geopotential coefficients--the calibrated
standard deviations--are used as the error model. These standard deviation values are ob-

tained from the corresponding calibrated error covariance matrix obtained for each geo-

potential model (References 3, 4, and 5). However, it was demonstrated in References 6 and 7

that the use of GEM9 standard deviations as a lumped error model can be faulty, because of

the anomalous global distribution of acceleration errors that is greater in the northern hemi-

sphere with a singularity near zero degree longitude and 60 degrees latitude. Such anomalous

distribution is not supported, however, by other evidence (References 3 and 8).

1.2 UNCORRELATED ERROR MODEL

The uncorrelated error modeling approach (UEMA) is generally used with the standard devi-

ations models and assumes that each spherical harmonic coefficient can be treated as an inde-

pendent error source. The orbital error caused by the geopotential error is then computed as

the root sum square (RSS) of the independent error contributions from all the harmonic coef-

ficients. This approach still requires a substantial amount of computational resources when

compared with the LEMA because it requires evaluating one variational equation for each of

the spherical harmonic coefficient error sources (Reference 2). For example, for the GEMT1

model with degree and order of 36, UEMA will require evaluating 1363 variational equa-

tions. Although some of the coefficients are known to be correlated (Reference 8), this ap-

proach may be reasonable (short of having to consider the correlations by including the entire

covariance matrix).

It was demonstrated in Reference 6, using the GEM9 standard deviations model, that this

approach produced more uniform global error distribution and more "realistic" orbital error

distribution, and has, thus, been used previously in sequential error analyses performed for
GSFC.

The study presented in this paper investigates the LEMA and UEMA in terms of global error

distribution characteristics and reasonableness of error magnitudes predicted for a variety of

spacecraft orbital scenarios. The reasonableness of a geopotential error model is assessed in

terms of global error distribution characteristics and orbit error analysis results. The geopo-

tential error models studied are listed in Table 1. The study results are presented in two parts.

In the first part, the global error distribution characteristics are analyzed for each of the geo-

potential models described in Table 1. In the second part of the study, the orbit determination
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Table 1. Geopotential Error Models and Modeling Approaches
Investigated in This Study

Geopotential
Model

GEM 9

GEM T1

GEM T2

Corresponding Error Models

Model

GEM9 Standard Deviations

GEM9 Standard Deviations

GEM9 - GEM7 Gravity Difference a

GEMT1 Standard Deviations
GEMT1 Standard Deviations

GEMT1 - Clone b

GEMT2 Standard Deviations

GEMT2 Standard Deviations
GEMT2 - Clone b

Size

(Deg. Order)

30, 30

36, 36

5O, 50

Approach

LEMA

UEMA

LEMA

LEMA

UEMA
LEMA

LEMA

UEMA

LEMA
Co

Notes."

LEMA: Lumped error modeling approach
UEMA: Uncerrelated error modeling approach

a. GEM9 - GEM7 difference model is thegeopotential error model currentlyused for operationalerror analysis supporl to
represent the 3 o_aluesof GEM9 force model error. This model is derived by taking the 135"/oof GEM9 - GEM7 differences up
to degree and ot-der of 21 to represent commission errors of the termsused in operational orbit determination and 100% of
GEM9 coeff'_ents from degree and order of 22 up to 30 to represent omission errors,

b. The clone models (References 9 and 10} are constructed such thatthe gravity errors computed using the difference between
the original mc.,dels(GEMT1 and GEMT2) and the respective GEMTt and GEMT2 clone models give similar results obtained
using the full calibrated error covariance rnatdces. A multiplication factor of 3 can be applied to represent 3cr error values.

errors resulting from the geopotential errors are assessed by performing linear error analysis

using the Orbit Determination Error Analysis System (ODEAS) (Reference 2) for a variety of

spacecraft mission scenarios. Specifically, analyses were performed for the Gamma Ray Ob-

servatory (GRO), the Cosmic Background Explorer (COBE), and the Ocean Topography Ex-

periment (TOPEX) types of missions, primarily in a sequential Kalman filtering mode.

2. RESULTS

The results of this study are presented in two parts. Section 2.1 discusses the global distribu-

tion of geopotential acceleration errors for each of the error models listed in Table 1. Sec-

tion 2.2 discusses the orbit determination errors resulting from geopotential errors predicted

by different geopotential models and modeting approaches for GRO, COBE, and TOPEX

spacecraft missions.

2.1 GLOBAL DISTRIBUTION OF GEOPOTENTIAL ACCELERATION ERRORS

Errors in the spherical harmonic coefficients will cause errors in computing the geopotential

accelerations (forces) acting on an orbiting spacecraft. These acceleration errors vary as a

function of geocentric latitude and longitude, and the error magnitude decreases with the in-

crease in orbital height for a fixed latitude and longitude grid point in space. Figures 1
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through 9 show the acceleration error magnitudes ( 1or values) as a function of geocentric

latitude and east longitude at an altitude of 200 kilometers above the surface of the Earth for

different geopotential error models and modeling approaches. The acceleration errors
shown are in the units of regal (10 -5 m/see2), rounded to the nearest integer.

For the LEMA, the acceleration errors at each of the latitude and longitude grid points are

computed by algebraically summing the contributions from each of the sine and cosine har-

monic coefficients at that particular location, using Equation (2).

nmax n (---C_nm Oa- ASm ) (2)AaLE =  xcm + 0sm
n=2 m=0

where nmax represents maximum degree of the geopotential error model, and AE'LEM A repre-

sents an instantaneous geopotential acceleration error a spacecraft would experience due to

errors in the spherical harmonic coefficients Cnm and Snm , which are represented by ACm and

AS TM in Equation (2). The acceleration error maps obtained using this modeling approach

are shown in Figures 1 through 6. In orbit error analysis computation using the LEMA, the

spacecraft position and velocity errors are obtained by integrating the effect of AffLEMA given

by Equation (2) in one variational equation.

For the UEMA, the acceleration errors are obtained by computing the RSS of the contribu-

tions from each of the sine and cosine harmonic coefficients rather than summing them

algebraically. This approach is shown mathematically in Equation (3) where AaUEMA repre-

sents the acceleration error magnitude obtained using the UEMA. The acceleration error

maps obtained using this modeling approach are shown in Figures 7 through 9.

Aauz_tA = '_ 0a- zxcm + AS (3)
m=0

It should be noted that in orbit error analysis computation using the UEMA, the spacecraft

position and velocity errors are obtained by integrating the individual vectors in the summa-

tion(i.e., O_ ACnm and O_
OC----_ 0-_nm Asnm) in separate variational equations and computing the

RSS of all individual error contributions.

It is interesting to see from Figures 1 through 3 that alI acceleration error maps obtained for

the LEMA using the GEM9, GEMT1, and GEMT2 standard deviations models tend to show

the same anomalous error distribution (i.e., a high concentration of large errors localized in a

particular region around zero degree longitude in the northern hemisphere and the rest of the

globe relatively error-free). The world map of gravity anomalies computed from GEM9 and
GEM10 models (Reference 3), the gravity anomalies computed from GEM7 and GEM8, and

the gravimetry data (Reference 8) do not support such anomalous distribution. This implies
that the orbit determination errors predicted by using such error models will also be anoma-
lous.
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Figure 1. Gravitational Acceleration Errors (mgai) Based on the LEMA Using
the GEM9 Standard Deviations Model
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Figure 4. Gravitational Acceleration Errors (mgal) Based on the LEMA Using
the GEMg-GEM7 Difference Error Model
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Figure 5. Gravitational Acceleration Errors (mgal) Based on the LEMA Using
the GEMTI-Clone Difference Error Model
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Figure 6. Gravitational Acceleration Errors (mgal) Based on the LEMA Using

the GEMT2-Clone Difference Error Model
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the GEM9 Standard Deviations Model
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On the other hand, the acceleration error distributions obtained for the UEMA seem to be

too uniform and symmetric to be realistic. (See Figures 7 through 9.) Comparisons between

GEM models and surface gravity measurement data (References 3 and 8) show that a more

realistic error distribution may be somewhere between these two cases.

It is also interesting to see that the LEMA based on the gravity difference models (i.e.,
GEM9-GEM7, GEMT1-Clone, and GEMT2-Clone models) give rise to error maps showing

random distributions in error magnitudes. (See Figures 4 through 6.) In the absence of the

absolute standard, the gravity difference models appear to be more realistic in terms of global
acceleration errors distribution.

2.2 ORBIT DETERMINATION ERRORS RESULTING FROM GEOPOTENTIAL
MODELING ERRORS

To assess the orbit determination errors that result from the geopotential modeling errors,

linear error analyses were performed using ODEAS for a variety of spacecraft missions with
different altitudes and inclinations. Specifically, error analyses were performed for GRO,

COBE, and TOPEX missions assuming an orbit determination mode using a sequential

Kalman filter. Batch-weighted least-squares results are also shown for COBE spacecraft.

The orbital elements at epoch for GRO, COBE, and TOPEX, their respective spacecraft pa-

rameters, force models, and the integration parameters used in the study are shown in Table 2.
Tracking simulations were performed for each spacecraft assuming a Tracking and Data Relay

Satellite System (TDRSS) tracking scenario, whereby the user spacecraft (GRO, COBE, or

TOPEX) is tracked for 2 days via TDRS-East (41 degrees west longitude) and TDRS-West

(171 degrees west longitude) with tracking pass lengths of 20 minutes per user spacecraft rev-

olution. Measurements include one range and one range rate every 10 seconds.

Error analyses were performed by estimating the orbital elements of the user spacecraft and

the atmospheric drag scaling parameter. Because the primary interest of this study is in

orbital errors resulting from the geopotential error sources, only the characteristics of geopo-

tential errors on orbit determination accuracy are presented. The orbital errors presented
below are based on 3a errors.

Figures 10a through 10c illustrate the GRO (altitude: 450 kin) spacecraft orbit determina-

tion errors resulting from the GEMg, GEMT1, and GEMT2 geopotential model errors, re-
spectively. Figures 11 and 12 illustrate simi]ar plots of orbit determination errors for COBE

(altitude: 900 kin) and TOPEX (altitude: 1340 kin) spacecraft, respectively. Table 3 shows
the root mean square (RMS) values, standard deviations, and maximum values of the orbital

errors after the initial transient period (taken to be 6 hours past epoch).

The RMS and maximum errors resulting from a given geopotential error model are expected

to decrease with increasing orbital altitudes from GRO to TOPEX. The orbital errors for a

given spacecraft are also expected to decrease from GEM9 to the more refined
models--GEMT1 and GEMT2. The observations made for each of the geopotential model-

ing approaches are summarized below.

1. UEMA results using the standard deviations models generally produce rather uni-

form error distributions at the expense of substantially higher computer processing times
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Table 2. Spacecraft Orbital Elements and Parameters

GRO COBE TOPEX

EPOCH: (YYMMDD) 920201 921109 920901
(HHMMSS) 000000 000000 000000

ORBITAL ELEMENTS AT EPOCH

Semi-major axis (kin) 6828.15
Eccentricity 0.0001
Inclination (deg) 28.5
R. A. of ascending node (deg) 0.0
Argument of perigee (de,j) 0.0
Mean anomaly (deg) 0.0

Orbital Period (minutes) 93.59

7278.047 7718.756
0.0003238 0.00112783

99.0296 63.14283
86.8450 0.0
94.9595 0.0

270,8221 0.0

102.99 112.48

SPACECRAFT PARAMETERS

Drag coefficient (Co)
Spacecraft area to mass
(m2 g)

Solar reflectivity (CR)

2.2 2.3 2.3
0.003347 0.006487 0.006487

1.5 1.3 1.3

FORCE MODELING

GEM9 30 X 30 for reference trajectory computation
Solar radiation pressure
Solid Earth tide

Atmospheric drag force using Harris-Priester density model
(Mean Flo.7 solar flux level = 175 X 10 -22 watts/m2/Hz)

ORBIT INTEGRATION

Integrator: Fourth-order Runge-Kutta Integrator
Step size: 60 seconds

TRACKING SCENARIO

20 rain/user spacecraft orbit from TDRS-East or TDRS-West
Range noise - 3.0 m
Range-rate noise = 0.00282 m/sec
Date rate ,. 1 range and range rate per 10 seconds
For batch-weighted least-squares method, the data weights are set to be the same as for data noise
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Table 3. Steady-State RMSs, Maximums, and Standard Deviations

of Orbital Errors in Sequential Filtering Mode

RMS

GRO
COBE

TOPEX

Maximum

GRO
COBE

TOPEX

Standard

Deviatbn

GRO
COBE

TOPEX

Units are in

LEMA USING STANDARD

DEVIATIONS

GEM9

20.462
96.004

6.598

42.344
323.620

22.229

8.462
50.265

3.498

GEMT1 GEMT2

8.578 5.693
30.581 23.799

3.463 3.027

23.146 15.784
86.041 66.670

8.848 9.052

4.894 3.148
16.092 12.824

1.841 1.702

meters

Notes."

LEMA USING GRAVITY UEMA USING STANDARD

DIFFERENCES DEVIATIONS

GEM9a GEMTlb GEMT2 c GEM9 GEMT1 GEMT2

85.155
56.067
22.459

200.430
181.460
63.587

33.998
26.493
12.737

105.188 96,495 119.717 83.700 76.112
26.588 16.786 48.529 25.288 19.211

3.527 1,813 22.111 9.500 7.689

288.670 235.400 227.350 135.420 117.960
60.767 53.962 85.404 43,749 34.032
10.399 6.866 42.564 18.198 15.028

56.350 40.462 22.190 14.929 14.059
14.655 9,964 15.127 7.129 5.356

1.848 1.199 5.498 2.274 1.881

a. GEM9-GEM7 difference model is used to represent GEM9 errors
b. GEMT1-CIone difference model is used to represent GEMT1 errors
c. GEMT2-Clone difference model is used to represent GEMT2 errors

(generally requiring three to seven times as much central processing unit (CPU) time as the

corresponding LEMA results). The uniformity is characterized by the relatively small stand-

ard deviation values when compared with the corresponding RMS values for alI the spacecraft

studied. Table 3 also indicates that the orbital errors predicted by the UEMA follow the ex-

pected trends.

2. LEMA results using standard deviations models produce either large error spikes (as

in the case of COBE) or relatively small errors (as in the case of GRO) when compared with

the corresponding UEMA results. These results are expected because of the anomalous dis-

tributions of geopotential acceleration errors as illustrated in Figures 1 through 3. The effect

of such distribution is that the orbital errors predicted for spacecraft with high orbital inclina-

tion, such as COBE (99 degrees), will result in large local error spikes. In contrast, the orbital

errors predicted for spacecraft with lower orbital inclinations, such as GRO (28.5 degrees),

can be unrealistically small. Such error characteristics are not supported by operational expe-
rience.

3. LEMA results using the gravity difference models are found to exhibit different be-

haviors for different spacecraft orbital scenarios. From Table 3, it can be determined that the

RMS and the maximum errors resulting from a given geopotential error model decrease, as

expected, when going from a low-altitude orbit of GRO to a high-altitude orbit of TOPEX.
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However, the orbital errors do not follow the expecteddecreasingtrend from GEM9 to the
more refined GEMT1 and GEMT2 error models for GRO, where theorbital errors resulting
from the GEMT1-Clone and GEMT2-Clone error models are larger than those of
GEMg-GEM7 error model. The error analysisresultsspecific to eachof the gravity differ-
ence models are summarizedbelow:

GEM9-GEM7 difference model produces reasonably close agreement with the
GEM9 UEMA results for GRO and COBE spacecraft. For TOPEX spacecraft,

while GEM9-GEM7 produces RMS orbital errors close to the UEMA results

(Table 3), relatively large and spiky errors are observed in orbital error distribu-

tions. (See Figures 10a, lla, and 12a.)

GEMT1-Clone model produces results comparable with the GEMT1 UEMA re-

sults for COBE but produces comparatively higher errors in GRO and compara-

tively lower errors in TOPEX. (See Figures 10b, llb, and 12b.)

GEMT2-Clone model produces results comparable with the GEMT2 UEMA re-

sults for COBE but also produces comparatively higher errors in GRO and lower

errors in TOPEX. (See Figures 10c, 11c, and 12c.)

To assess the reasonableness of the error magnitudes predicted by each error modeling ap-

proach, the orbital errors must be compared with independent results. Reference 5 provides

independent error analysis results for TOPEX-type spacecraft for GEMT1 and GEMT2

models. These results were obtained using the first-order analytical perturbation theory of

Kaula (Reference 11) and fully calibrated covariance matrices of GEMT1 and GEMT2 solu-

tions, assuming a 10-day TOPEX arc.

Because such analyses do not account for the effect of imperfect tracking scenarios, the

orbital errors thus obtained can be regarded as errors due entirely to the geopotential model

under a perfect tracking condition. According to Reference 5, the projected orbital errors

resulting from GEMT1 and GEMT2 model errors for a 10-day TOPEX arc are 1.9 and

0.9 meters (lcr), respectively. This translates to 5.7 and 2.7 meters (3e) as shown in Table 4.

For comparison purposes, additional TOPEX error analysis was performed using the

ODEAS sequential processing mode assuming a continuous tracking of TOPEX from

TDRS-East and TDRS-West for 2 days using range and range-rate data. Continuous tracking

was used to minimize the effect of imperfect tracking conditions on orbital errors. Table 4

lists the RMS orbital errors obtained after the initial transient period using different GEMT1

and GEMT2 error models.

The results indicate that, for TOPEX-type spacecraft, the projected orbital errors quoted in

Reference 5 lie in between the UEMA and the LEMA results with UEMA results being on

the high side.

Figures 13a through 13c show the batch-weighted least-squares orbit determination errors

for COBE spacecraft resulting from GEMg, GEMT1, and GEMT2 error models, respec-

tively. Error analysis results are presented assuming a 2-day definitive data for all cases.

Again, it can be observed that the LEMA using standard deviations models produces very
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Table 4. Comparison of TOPEX Orbital Errors (3_ values) Using Different
Geopotential Error Modeling Approaches

Geopotential
Model

GEMT1

GEMT2

Projected orbital
errors for 10-day

arc (meters)
(Reference 5)

5.7

Steady-state RMS
orbital errors for a 2-day

continuous tracking (meters)

UEMA

2.7

7.4

6.1

LEMA a

3.2

1.3

"7

Notes."

a. GEMT1-CIone and GEMT2-Clone gravity difference models are used to
represent geopotential errors due to GEMTI and GEMT2 models,
respectively.

large spikes in orbit errors. However, the LEMA using the gravity difference models

produces results similar to the corresponding UEMA results. This was also found to be the

case for COBE spacecraft in sequential processing mode. (See Figures 1 la through l lc.)

Figures 14a through 14c compare COBE orbit determination errors processed in sequential

Kalman filtering with batch-weighted least-squares modes using identical tracking schedules

in both modes. As expected, the effects of local error spikes are less severe in the

batch-weighted least-squares mode than in the sequential Kalman filtering mode, and the

batch solutions agree with the corresponding sequential solutions at the end of the data arc.

3. CONCLUSIONS AND RECOMMENDATIONS

From the observation of geopotential acceleration error maps, two primary conclusions can
be drawn.

1. The LEMA using standard deviations models produces an anomalous trend having

a high concentration of large acceleration errors that are localized in a particular region

around zero degree longitude in the northern hemisphere and the rest of the globe remains

relatively error-free. Such an error distribution can give rise to spurious local error spikes for

high-inclination spacecraft (such as COBE) and unrealistically small errors for low-

inclination spacecraft (such as GRO). It can, therefore, be concluded that the standard devi-

ations models should not be used in conjunction with the LEMA.

2. However, the UEMA using standard deviations models is found to produce uni-

form acceleration error bands symmetric in northern and southern hemispheres. This may,
again, be unrealistic. On the other hand, the LEMA using gravity difference models gives

error maps showing random distributions in error magnitudes. In the absence of the absolute
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standard, the error characteristics shown in the gravity difference models appear to be the

more reasonable representation of geopotential errors.

From the error analysis results, three additional conclusions can be drawn.

1. The geopotential error models that are based on the UEMA generally produce

fairly uniform error distributions usually free from unrealistic error spikes at the expense of

substantially higher computer processing times (generally requiring three to seven times as

much CPU as the LEMA). The uniformity is characterized by relatively small standard devi-

ation values when compared with the corresponding RMS values. This was found to be the

case in both sequential and batch processing modes. Also, the orbital errors predicted by this

modeling approach generally follow the expected trends--meaning that, for a given geopo-

tential error model, the RMS and the maximum orbital errors decrease with increasing

orbital altitudes from GRO to TOPEX; and for a given spacecraft, the orbital errors decrease

from GEM9 to the more refined models (GEMT1 and GEMT2).

2. The difference error models in LEMA generally produce higher fluctuation in er-

rors than the UEMA. This is characterized by relatively large standard deviation values when

compared with the corresponding RMS values.

3. Generally, the error characteristics produced by different geopotential error mod-

eling approaches are not sensitive to orbit error estimation mode. For COBE spacecraft, the

error signatures produced by the batch-weighted least-squares mode are similar to those of

sequential Kalman filtering mode, except that the error magnitudes and the error fluctuations

are smaller in batch mode. This is expected because of the data-smoothing effect realized in
the batch estimation mode.

It is difficult to suggest a general error modeling approach that can be used for all spacecraft

scenarios. As discussed earlier, if central processing unit (CPU) and computing resources are

not of a concern, error analysis should be performed using the entire covariance matrix of

spherical harmonic coefficients, to account correctly for the correlations that exist among

these coefficients. In the absence of this, the UEMA may be a reasonable error modeling

approach for most spacecraft scenarios because the orbital errors predicted by UEMA are

mostly free from unrealistic error spikes and follow the expected trends as discussed earlier.

The disadvantage of this approach is still the substantially higher CPU requirement over the

LEMA for operational error analysis support.

The LEMA using difference models, while computationally efficient, is found to exhibit dif-

ferent characteristics for different spacecraft. GEM9-GEM7 seems to be a good error model

to represent GEM9 modeling errors for GRO and COBE spacecraft, but it is not very reason-

able for TOPEX because of some sporadic, large error spikes. GEMT1-Clone and

GEMT2-Clone models seem to be good error models for representing GEMT1 and GEMT2

errors, respectively, for TOPEX and COBE spacecraft, but tend to produce large error spikes

in GRO spacecraft.

As discussed previously, geopotential error models based on either the LEMA or the UEMA

do not properly take into account the correlations that exist among the harmonic coefficients.

If computer resources permit, future studies should include orbital error analyses using the
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entire covariance matrix of spherical harmonic coefficients to take proper account of the cor-

relations. This will also provide a reference point for calibrating other geopotential error

modeling approaches. Future study should also include the development of an improved

error modeling approach feasible for operational use. Such a modeling approach will be

based on a certain combination of LEMA and UEMA with proper correlation information

obtained from the calibrated error covariance. To augment the error analysis results, the au-

thors also recommend performing sequential and batch orbit determination studies using
real tracking data.
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ABSTRACT

Current techniques for generating spacecraft ephemerides

typically use a constant value of the ballistic coefficient

during orbit propagation. This is due in part to the added

complexity of calculating attitude-dependent aerodynamic forces

and in part to the great inaccuracy in the prediction of the

atmospheric density, which would result in substantial orbital

position errors even if the ballistic coefficient were to be

determined exactly at all times. Assuming a constant ballistic

coefficient, however, introduces errors that may be as large as

those caused by the density uncertainty. For inertially-

stabilized spacecraft, these errors may be reduced either by

calculating orbit-averaged ballistic coefficients for each

viewing attitude, or by calculating aerodynamic force

coefficients for the appropriate geometry at each integration

step.

This report describes briefly the FREEMAC program used to-

generate the aerodynamic coefficients, as well as associated

routines that allow the results to be used in other software.

These capabilities are applied in two numerical examples to the

short-term orbit prediction of the GRO and HST spacecraft.

Predictions using attitude-dependent aerodynamic coefficients
were made on a modified version of the PC-based Ephemeris

Generation Program (EPHGEN) and were compared to definitive orbit

solutions obtained from actual tracking data. The numerical

results show improvement in the predicted semi-major axis and

along-track positions that would seem to be worth the added

computational effort.

Finally, other orbit and attitude analysis applications are

noted that could profit from using FREEMAC-calculated aerodynamic

coefficients, including orbital lifetime studies, orbit

determination methods, attitude dynamics simulators, and

spacecraft control system component sizing.
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1.0 INTRODUCTION

In the course of planning and supporting a low-Earth-orbit

satellite mission, both long- and short-term orbit predictions

are required. Long-term predictions (over months or years) are

used to plan orbit reboost maneuvers and to estimate time of

atmospheric reentry, while short-term predictions (over days or

weeks) are used to schedule tracking resources and scientific

data collection. Since the position of a satellite in low Earth

orbit is highly dependent on aerodynamic drag, this effect must

be modeled as well as possible for accurate orbit predictions.

Aerodynamic drag is given by:

where
D = JVrj CdAVr

p = atmospheric density

V r = relative velocity of spacecraft and atmosphere

C d = coefficient of drag
A = satellite cross-sectional area

The predominant error source in the drag calculation is due to

density modeling inaccuracies. Substantial errors may also be

introduced through the C d and A terms, however; these terms vary

with attitude and orbit position, and can be difficult to

calculate. The benefits of calculating attitude-dependent CdA

values have generally been considered in the past to be not worth

the computational effort required, especially given large errors

due to density modeling which would still cause errors in the

drag estimate even if values for CdA were to be calculated

perfectly at each instant. The CdA term in the drag equation is

therefore typically held constant over the period of prediction,

often for the spacecraft's entire operational lifetime.

As might be imagined, using such a constant CdA introduces

substantial errors in addition to those due to the density

uncertainty. These errors may be quite large, especially for

spacecraft with large appendages, and may approach in magnitude

the errors due to density mismodeling.

This report presents recent work done in Goddard's Flight

Dynamics Analysis Branch that enables attitude-dependent drag

coefficients and areas to be calculated. In particular, software

tools are described that calculate these coefficients and permit

them to be accessed easily in a variety of orbit and attitude

applications. These routines are applied to the case of short-

term orbit determination of inertially stabilized spacecraft

through numerical examples using real data from the Hubble Space
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Telescope (HST) and the Gamma Ray Observatory (GRO). Finally,

suggestions are made for other uses of FREEMAC-determined

attitude-dependent aerodynamic coefficients in the orbit and

attitude analysis fields.

2.0 CURRENT ORBIT DETERMINATION AND PREDICTION TECHNIQUES

Orbit determination and short-term prediction for Earth-

orbiting satellites are currently performed in NASA/Goddard's

Flight Dynamics Division (FDD) with the Goddard Trajectory

Determination System (GTDS). GTDS uses the following equation

for drag when in orbit prediction mode:

where

#o
>
v r

c d
A

IVrl CdA V r

= atmospheric density taken from Harris-Priester table

= corrective density term

= relative velocity of spacecraft and atmosphere

= coefficient of drag

= satellite cross-sectional area

Parameter _ in this equation is generally solved for in the orbit

determination process, then used subsequently in the prediction;

it accounts for differences between the actual density and the

assumed atmospheric density.

Because any CdA mismodeling is compensated for in _ , there

is a tendency not to calculate the most accurate CdA for use in

GTDS, since any errors in CdA will be removed in solving for _ .

Moreover, lumping the CdA and density errors together into the

term hides the fact that the CdA product can be fairly accurately

calculated if the effort is expended to do so, while the density

calculation will have substantial errors in any case due to the

random nature of the solar flux, which drives atmospheric

density.

In practice, the drag coefficient is usually taken as 2.2 or

2.0, while the cross-sectional area is approximated from the

views on the blueprint.

3.0 ATTITUDE-DEPENDENT AERODYNAMIC COEFFICIENTS

Constant CdA values have been used in the past probably

because the complexity of calculating a changing values for

different mission geometries was deemed not worth the effort.

recent years, however, software tools have been developed that

In
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make the use of more accurate attitude-dependent aerodynamic

coefficients easy to implement in a variety of applications.

These routines, based on the FREEMAC program described in Fredo

[i], are described in some detail in the Appendix and are

summarized below.

FREEMAC calculates the spacecraft aerodynamic force, moment,

and drag coefficients as a function of body frame velocity

direction using a user-input geometrical model of the spacecraft,

a shadowing technique, and free molecular flow theory. The

coefficients are written to a file for velocity vectors spaced

every I0 ° in azimuth and elevation in the body frame. A

subroutine has been written that interpolates quadratically

between these values to obtain accurate coefficients for any

given input body frame velocity vector. Because this

interpolation can be performed quickly on a digital computer,

this subroutine can be used to return aerodynamic coefficients at

the same frequency that other environmental perturbations (e.g.,

third body accelerations, gravity gradient torques, etc.) are

calculated in orbit and attitude integrators.

3.1 CONSTANT COEFFICIENTS: OVERALL & ORBIT-AVERAGED

FREEMAC-determined drag coefficients (or, alternatively, CdA

values) can be applied to the orbit prediction problem at several

levels of complexity and computational effort. First, constant

attitude-independent CdA values can be used for lifetime

predictions and other situations where the velocity vector is

known to take on essentially a random directional distribution in

the body frame during the prediction period, as is the case, for

example, for an inertially-stabilized spacecraft changing its

attitude frequently. In these situations, a FREEMAC-calculated

CdA values averaged over all possible body frame velocity

directions could be applied. These average CdAS can be used in

all the current software. They have the advantage of being

detailed calculations based on a model of the spacecraft, rather

than being just the "eyeball" estimates of the spacecraft area

currently used times a drag coefficient value of 2.2.

For spacecraft stabilized in a constant orbit-based

reference frame in which the velocity vector remains fixed in the

body frame, a FREEMAC-determined CdA can be interpolated from the

coefficient file and can be used for the remainder of the

mission, without further recourse to FREEMAC. For inertially

stabilized spacecraft, however, the velocity vector rotates 360 °

in the body frame, causing the CdA to change sinusoidally around

the orbit. The effect of this varying CdA on orbit decay can be

approximated by an orbit-averaged CdA for time spans of less than
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a week or so (for periods in which the orbit orientation does not

change too much). Section A.3 of the Appendix describes a

subroutine that has been developed to calculate these orbit-

averaged coefficients.

3.2 CONSTANT COEFFICIENTS FOR EACH INERTIAL ATTITUDE

The next level of complexity is to calculate drag using CdS

held constant over various spans of the prediction period. This

segmentation technique can be used for inertially-stabilized

spacecraft that change viewing attitudes regularly, for example.

It has the advantage of being applicable to current software,

with the constant CdAS being precalcu!ated from the FREEMAC

results. This method does lose some accuracy, however, if the

orientation of the orbit plane changes significantly over the

prediction span.

3.3 COEFFICIENTS DETERMINED EACH INTEGRATION STEP

The third and most accurate approach is also the most

rigorous computationally: as with other perturbing forces (third

body, Earth asphericity, etc.) a FREEMAC-determined drag force is

calculated at each orbit integration step. The complete

aerodynamic force coefficient vector [Cx, Cy, Cz] T is

interpolated from the FREEMAC coefficient file at each time step;

this allows for the determination of the aerodynamic effect on

not only the in-plane elements, but on inclination and node as

well.

The third approach above was implemented on EPHGEN, a PC-

based orbit generator using the GTDS 12th order Cowell

integrator. Test runs have shown that this approach increases

run time by approximately 45%, an increase which, though it seems

large, is roughly equivalent to increasing the order of the Earth

gravitational potential model from 16x16 to 21x21.

4.0 NUMERICAL EXAMPLES

To assess the accuracy benefits to be gained by using the

above FREEMAC-based approaches, two numerical prediction cases

were run and are presented below, the first using GRO data, the

second using HST data. For all the predictions, the 12th order

Cowell integrator in EPHGEN was used with a 60 second step size.

Both solar and lunar gravitation perturbations were applied, and

a 16x16 geopotential model was used with a cosine power of 2 and

a bulge angle of 30 ° . The mass of GRO was taken as 15700 kg, and

that of HST as 11328 kg.
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4.1 NUMERICAL EXAMPLE: GRO DATA

Tracking data for the GRO spacecraft were obtained for an

approximately four week period spanning 910418.00 to 910515.21.

The spacecraft assumed seven different inertial attitudes during

this period, as given in Table i. Predictions were made for the

4 week span using the current operational approach and the latter

two methods above, based on epoch elements obtained from a GTDS

solution using the real tracking data. The three predictions at

the end time were then compared to another GTDS solution at the

end of the span which again used the real tracking data.

TABLE 1 -- GRO ATTITUDES

Times 1-2-3 Euler Angles

[deq]

Solar array Average

angles CdA

[deq] Im2]

414.05-419.03

419.03-428.15

428.15-501.17

501.17-504.16

504.16-507.16

507.16-510.17

510.17-515.22

-96.86 -18.00 -10.24 2. 93.9

-67.88 3.01 -0.51 37. 82.5

-74.76 0.22 -49.90 48. 80.2

-74.76 0.22 40.20 52. 96.8

-67.86 6.00 -0.90 51. 94.8

-10.98 -31.04 64.20 .6 91.5

-144.93 -30.05 -81.55 -II. 92.7

The three prediction methods were:

Current operational approach: a C d of 2.2 and an

average area of 47 m 2 were used for the whole 4 week

period. (Note that this area is actually the FREEMAC

area averaged over all body frame velocity vector

directions.)

Average CdAS used for each attitude. Orbit-averaged CdA
values were calculated from the FREEMAC coefficients for

each of the seven attitudes and were applied as

constants over the respective time spans. Mid-span

orbital elements were used in the orbital averaging,

with the ascending node drift rate approximated

beforehand.

#3 -- Force coefficient vector [Cx, Cy, Cz] T extracted and

applied at each integration time step.
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Note in Table 1 that the solar array angles changed with

each attitude. Since each FREEMAC coefficient file is only valid

for a single geometric configuration, some approximation was

required here. For three of the attitudes, a file created with a

0 ° array anglewas used, while one for 45 ° was used for the other

four.

Atmospheric density is modeled in EPHGEN using Harris-

Priester tables corresponding to flux levels at increments of 25.

The table for a flux level of 225 was used in the predictions,

this level being the one closest to the 90-day average flux of

236 at the beginning of the four weeks (see Figure i).
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Figure i.

Table 2 shows the predicted end-of-span Keplerian elements

for these three methods, as well as the GTDS solution. The table

shows the prediction errors for the three methods, as well; the

semi-major axis errors and along-track position errors indicate

that Methods #2 and #3 both predicted the spacecraft position

more accurately than Method #I.
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TABLE 2 -- GRO ORBIT PREDICTION RESULTS

Time

Epoch

Elements:

GTDS GTDS
End-of-Span Elements:

Method #i Method #2

910418.00 910515.21 910515.21 910515.21

Method #3

910515.21

SMA 6831.8933 6827.6276 6826.7265 6827.2884 6827.6931

ECC .00202200 .00169399 .00164543 .00169023 .00170903

INC 28.438234 28.298850 28.427451 28.427224 28.427381

LAN 153.22101 319.90855 320.20086 320.24621 320.26151

ARP 84.043841 51.170140 52.747475 50.810026 50.458236

MAN 40.158192 32.337343 43.780799 34.814229 31.085599

Argument

of latitude: 83.507483 96.528274 85.624255 81.543835

Prediction Errors: Method #I

Semi-major axis [km]: -.9011

Eccentricity: -.00004856

Inclination [deg]: +.128601

RA ascend, node [deg]: +.29231

Arg. of perigee [deg]: +1.577335

Mean anomaly [deg]: +11.443456

Arg. latitude [deg]: +13.020791

Along-track position

error (approx.) [km]: +1551.5

Method #2

-.3392

-.00000376

+.128374

+.33766

-.360114

+2.476886

+2.116772

Method #3

+.0655

+.00001504

+.128531

+.35296

-.711904

-1.251744

-1.963648

+252.2 -234.0

The most notable result is the accuracy to which Method #3

predicted the semi-major axis (to within 70 m over the 4 weeks,

as compared to an error of over 700 m for Method #i). The

improvement in along-track error is also impressive: Methods #I &

#2 gave errors of only about 250 km, as opposed to 1500 km for

Method #i.

4.2 NUMERICAL EXAMPLE: HST DATA

Tracking data for the HST spacecraft were obtained for an

approximately one week period spanning 910311.0415 to

910317.2215. Since the spacecraft changed its attitude 36 times

during this span, using the orbit-averaged C d method and the

force-coefficient-every-integration-step method was deemed

impractical with the software currently available. Instead, the

following constant CdA cases were used for the predictions:
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#i -- Average CdA value used operationally: C d = 2.47,

Area = 74 m 2. Corresponds to CdA = 182.78 m 2.

#2 -- FREEMAC CdA averaged over all body frame velocity

directions: C d = 1.873, Area = 78.3 m 2. CdA = 146.7 m 2.

Best FREEMAC CdA estimate. Using the facts that HST

points its solar arrays at the sun and that the sun

vector lies in the orbit plane at this time, the average

CdA in method #2 was adjusted upward to account for the

greater area swept out by the solar arrays in this

geometry as compared to the average over all body frame

velocity directions. This readjustment was given by:

A 3 = A 2 + As/a* ( 2/_ - 1/2 )

where 2/_ and 1/2 are the proportions of the solar array

seen on average in an orbit with the orbit normal

parallel to the solar array, and on average from all

directions, respectively. The resulting calculation

gives: Area = 86 m 2. Using a similar C d of 1.873 gives

CdA = 161 m 2. These numbers represent then the best

guess CdA for the given orbit/attitude geometry and the

FREEMAC coefficients.

Again, actual tracking data was used in GTDS to obtain the

initial elements and the end-of-span elements to which the

predicted end-of-span elements were compared. The Harris-

Priester density table for a flux level of 225 was again used in

the predictions, this level being the one closest to the 90-day

average flux of 224 at the beginning of the span (see Figure i).

Table 3 shows the predicted end-of-span Keplerian elements

for the three predictions and the GTDS solution, as well giving

the prediction errors for the three cases. The prediction errors

indicate that the FREEMAC best-estimate of the average CdA (Case

#3) predicted the semi-major axis surprisingly well (to within

about 3m, as compared to about 40m with the standard numbers of

Case #i). This makes the lack of improvement in the along-track

position somewhat perplexing, since one might suppose the two

quantities would be correlated somewhat.
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TABLE 3 -- HST ORBIT PREDICTION RESULTS

Epoch

Elements:

GTDS GTDS

End-of-Span Elements:

Method #I Method _2 Method #3

Time 910311.0415 910317.2215

SMA 6988.7524 6989.0337 6988.9920 6989.0567

ECC .00064063 .00179858 .00179714 .00179976

INC 28.409823 28.272128 28.414024 28.413882

LAN 348.53786 305.25818 305.40857 305.40973

ARP 3.944306 95.843055 95.999651 95.851540

MAN 275.07443 20.102278 20.044183 19.866536

Argument
of latitude: 115.94533 116.04383 115.71807

6989.0310

.00179872

28.413938

305.40927

95.910008

19.937082

115.84709

Prediction Errors: Method #I

Semi-major axis [km]:

Eccentricity:

Inclination [deg]:

RA ascend, node [deg]:

Arg. of perigee [deg]:

Mean anomaly [deg]:

Arg. latitude [deg]:

Along-track position

error (approx.) [km]:

Method #2 Method #3

-.0417 +.0230 -.0027

-.00000144 +.00000118 +.00000014

+.141896 +.141754 +.141810

+.15039 +.15155 +.15109

+.156596 +.008485 +.066953

-.058095 -.235742 -.165196

+.098500 -.227260 -.098240

+12.0 -27.7 -12.0

4.3 COMMENT ON RESULTS

Because atmospheric density and the CdA term are so

difficult to distinguish between, the accuracy of the results

above is highly dependent on the density over the spans in

question. Fortunately, for the runs presented above, the 90-day

average solar flux across the spans averaged almost exactly 225

in both cases (see Figure I), suggesting that the actual

densities in these runs may have been close to the table values.

This in turn suggests that the improvements in ephemeris accuracy

noted above are real, rather than just happy coincidence.

Further experimentation with the FREEMAC coefficients is

needed in any case to validate the improvement in ephemeris

accuracy. Possibly a large number of runs could be made to

statistically reduce the effect of the density variation.
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5.0 OTHER POTENTIAL USES OF FREEMAC COEFFICIENTS

In addition to the improvement in the short-term predictions

noted above, using FREEMAC-determined average ballistic

coefficients ( or CdA values) should greatly improve lifetime

studies and long-term decay studies, especially if the target

attitudes are known beforehand. Orbit-averaged CdS or ballistic

coefficients for each attitude could then be determined and used

in the propagator. Alternatively, the FREEMAC coefficients

obtained by averaging over all wind directions (see Section 3.1)

could be used to get more accurate constant CdA values.

Orbit determination (OD) from tracking measurements could

also benefit from FREEMAC-determined coefficients. If GTDS could

be modified to accept a varying value for the CdA term in the

drag equation, the effect of CdA and density variations could be

decoupled somewhat, with the effect of the CdA variation being

removed, thus leading to potentially lower residuals and greater

orbit determination accuracy. The sinusoidal variation in CdA

cannot be modeled accurately by the fifth order polynomial for

rhol currently used in GTDS.

GTDS should be modified to accept a Fourier series

representation of the varying CdA , or at least a general sine

curve, with the independent variable being the mean or true

anomaly. The coefficients for these curves could then be

calculated in the same program that calculates the orbit-averaged

FREEMAC coefficients (see Section A.3).

The attitude analysis field could use FREEMAC aerodynamic

torque coefficients to possible an even greater extent than the

orbit field could use the force coefficients. By inserting a

subroutine described in the Appendix (Section A.2) into any host

program, the user can obtain the FREEMAC torque coefficients for

a given body frame wind direction. Used in attitude dynamics

simulators, these coefficients would result in more realistic and

accurate aerodynamic torques. These coefficients could be used,

for example, to predict the effect of aerodynamic torques on the

drift rates of spinning spacecraft spin axis attitude. Orbit-

averaged torque coefficients (see Appendix A.3) could be used to

size control system components, or to determine at what torque

levels (and thus altitudes) the control systems will fail.
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Another potential application of FREEMAC pertains to

spacecraft in higher Earth orbits. Because the FREEMAC shadowing

routine is based on a shadow projection technique, the program

could be modified to calculate solar radiation pressure

coefficients. FREEMAC would then provide coefficients for the

largest environmental torques on spacecraft in both the lowest

and highest Earth orbits.

6.0 CONCLUSION

New techniques for calculating attitude-dependent

aerodynamic coefficients have been described here, along with

suggestions for their use in various areas of orbit and attitude

analysis. These techniques have been applied to the short-term

orbit prediction of the GRO and HST spacecraft in two numerical

examples. The use of attitude-dependent drag coefficients

resulted in improved ephemeris accuracy, particularly when these

coefficients were determined at each orbit integration step.

Further work is required to validate the improvements suggested

by these results, and to calibrate the FREEMAC-determined

coefficients, if necessary.
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APPENDIX

The FREEMAC software referenced in the paper was presented

originally in Fredo [I]. Through additions and modifications due

to one of the authors (Baker) and others, the capabilities and

results of FREEMAC have been enhanced and made more accessible

for a variety of mission analysis and operations applications.

This appendix summarizes present FREEMAC capabilities, giving

some details on recent program enhancements.

A.I FREEMAC CAPABILITIES

The original FREEMAC software presented in Fredo [i]

calculated the aerodynamic force and moment coefficients of a

spacecraft modeled on the computer with certain basic geometrical

shapes (flat plates, spheres, cylinders, etc.). These basic

shapes were subdivided into smaller planar elements, which were

checked using a shadow projection technique to determine whether

they were exposed to the flow or shielded by other elements. The

forces and torques due to each exposed element were summed to

obtain those values for the whole spacecraft, and the

nondimensional coefficients were calculated by dividing the

forces and torques by certain dimensioned quantities, including a

reference area and length. Experimentally-determined momentum

accommodation coefficients from Knechtel and Pitts [5] were used

in determining the force on each exposed element.

The force and moment coefficients were determined in this

manner for each direction that the wind could approach the

spacecraft, as represented by different wind vector directions in

the body frame. The quantities calculated for each wind vector

direction were:

C x, Cy, C z

Mx, My, M z

C d

A

-- Aerodynamic force coefficients

-- Aerodynamic moment coefficients

-- Aerodynamic drag coefficient

-- The exposed cross-sectional area of the spacecraft

as viewed down the wind vector direction

The program has been modified slightly to output the last

quantity, as well as to calculate weighted averages of the above

coefficients and areas over all the various wind vector

locations. Such an overall average area or C d could be used, for

example, in analyzing the lifetime of spacecraft in low Earth

orbit if the wind could be assumed to approach the spacecraft

from all directions with roughly equal probability over the

course of a mission, as might be the case for an inertially-

stabilized satellite changing attitudes fairly regularly.
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A.2 USING FREEMAC OUTPUT

In order to access the results of FREEMAC with other

computer programs, a coefficient file was output from FREEMAC,

and an interpolation subroutine was written to return the

FREEMAC-determined coefficients for any given body frame velocity

vector direction input to it. In particular, the eight

coefficients listed above were calculated and output to the file

for velocity vector directions spaced every i0 ° in body frame

right ascension and declination. The output accessing subroutine

obtains the coefficient values for any arbitrary velocity

direction using a quadratic interpolation scheme using 16 data

points from the FREEMAC coefficient file. This subroutine allows

quick access to FREEMAC results, and can be inserted into a wide

variety of mission analysis and operations programs (see Section

5.0) to improve the modeling of aerodynamic forces and torques.

A.3 ORBIT-AVERAGED COEFFICIENTS DETERMINATION

For inertially stabilized spacecraft, the velocity vector

slews through 360 ° in the body coordinate frame over the course

of an orbit, with the value of CdA changing as it moves. Because

of this, it is often necessary to calculate orbit-averaged

aerodynamic coefficients. An auxiliary program has been coded

that calculates these by stepping through the orbit and averaging

the FREEMAC coefficients obtained at each point using the

interpolation subroutine mentioned above. Steps of constant true

anomaly are used, concentrating the samples at perigee, where the

greatest drag occurs. The orbit averaged coefficients are

obtained by:

C _ ( _ I

Z

Calculating the coefficients in this way accounts for the greater

aerodynamic effects at perigee, especially for highly eccentric

orbits. Harris-Priester tables are used for the densities.

A.4 VALIDATION OF SPACECRAFT MODEL WITH GRAPHICS PACKAGE

One impediment to the use of FREEMAC in the past has been

the difficultly in determining whether or not the geometric model

of the spacecraft is correct, due to the somewhat non-user-

friendly input format used. This problem has been alleviated

somewhat by a new capability allowing the geometric model to be
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displayed on with a CAD graphics package. By viewing the model

with the CAD package, the user can quickly determine whether the

constituent basic shapes are of the right size and are oriented

correctly. Figure 2 and 3 show CAD displays of the GRO and HST

models used in the numerical examples presented in the report.

Figure 2.

GRO

\

\

A.5 VALIDATION OF FREEMAC RESULTS

Another reason for hesitation in using FREEMAC in the past

was the concern that the program had not been rigorously tested.

Over the past few years, confidence in the program has increased

as hand-calculations of such easily-calculable quantities as area

has agreed with the program results. Validating the aerodynamic

coefficients has been more complicated, however, and has been

done only partially by comparing FREEMAC CdS for HST to those

used at Marshall Space Flight Center (MSFC) and at Johns Hopkins'

Applied Physics Laboratory (APL). The FREEMAC numbers agree well

with the others, as Figure 4 shows for a sample attitude/orbit

configuration.

A.6 A CAUTIONARY NOTE REGARDING FREEMAC COEFFICIENTS

It should be noted that FREEMAC cannot account for the drag

due to inflow behind shielding elements. This additional drag

source is due to the atmospheric particles having an intrinsic

velocity due to their thermal motion; this velocity, when added

vectorally to the spacecraft's, can particles to flow in behind
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shielding elements and hit the spacecraft in a region FREEMAC

considers in shadow, causing an additional unmodeled force.

Thus, the actual C d may be somewhat greater than the FREEMAC

value; this effect will be greater for long, thin spacecraft and

for spacecraft with long shielding appendages.

45
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ABSTRACT

In 1961, Sperling linearized and regularized the differential equations of motion

of the two-body problem by changing the independent variable from time to fictitious
J_

time by Sundman's transformation (r = at) and by embedding the two-body energy
ds

integral and the Laplace vector. In 1968, Burdet developed a perturbation theory

which was uniformly valid for all types of orbits using a variation of parameters

approach on the elements which appeared in Sperling's equations for the two-body
solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations

by embedding the total energy (which is a constant when the potential function is
explicitly dependent upon time.) The Jacobian constant was used as an element to

replace the total energy in a reformulation of the differential equations of motion. In

the process, another element which is proportional to a component of the angular
momentum was introduced.

Recently trajectories computed during numerical studies of atmospheric entry from cir-

cular orbits and low thrust beginning in near-circular orbits exhibited numerical insta-

bility when solved by the method of Bond and Gottlieb (1989) for long time intervals.

It was found that this instability was due to secular terms which appear on the right-

hand sides of the differential equations of some of the elements. In this paper, this

instability is removed by the introduction of another vector integral called the delta

integral (which replaces the Laplace Vector) and another scalar integral which remove

the secular terms. The introduction of these integrals requires a new derivation of the
differential equations for most of the elements. For this rederivation, the Lagrange

method of variation of parameters is used making the development more concise.

Numerical examples of this improvement will be presented.

This work was performed for NASA-JSC Houston, Texas under Contract No. NAS9-
17885.

265



_r

1.0 Summary

In 1961 Sperling linearized and regularized the differential equations of motion of the two-body prob-

lem by changing the independent variable from time to fictitious time by Sundman's transformation
2.

(r = at) and by embedding the two-body energy integral and the Laplace vector which is also an
ds

integral of the motion into the Newtonian form of the differential equations of motion. The solution of

Sperling's differential equations was uniformly valid for all types of orbits. In 1968, Burdet developed

a perturbation theory using a variation of parameters approach on the 14 elements which appeared in

the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by

using the total energy of the perturbed system as a parameter instead of the two-body energy and by
reducing the number of elements to 13. In 1989 Bond and Gottlieb embedded the Jacobian integral,

which is a constant when the potential function is explicitly dependent upon time as well as position in

the Newtonian equations. The Jacobian constant was used as an element to replace the total energy in

a reformulation of the differential equations of motion. In this process, another element which is pro-

portional to a component of the angular momentum is introduced. This brought the total number of

elements back to 14. In this paper the Laplace vector is replaced by another vector integral as well as

another scalar integral which remove small secular terms which appear in the differential equations for
some of the elements.

2.0 Introduction

The non-linear differential equations of motion for the cartesian coordinates of the two-body problem
can be regularized and linearized by the three-step procedure of changing the independent variable form

time (t) to fictitious time (s) by the application of the Sundman transformation, embedding the Laplace

integral and embedding the Jacobian integral.

By regularization we mean the removal of all singularities, and by linearization we mean that the
differential equations for the cartesian coordinates are transformed to harmonic oscillators. Previously,

regularization and linearization were done by Burdet (1968) by embedding the two-body energy which

is constant only for the two-body problem and by Bond and Hanssen (1973) by embedding the total

energy which is a constant when the two-body system is perturbed by a conservative potential (function

of position only). In Bond and Gottlieb (1989), the Jacobian integral, which is a constant for the case

of the two-body system perturbed by a potential function that is explicitly dependent on time as well as

position, was embedded in the Newtonian equations. All three of these approaches reduce to the same

system of equations in the absence of perturbations.

Recent numerical studies on atmospheric entry from near circular orbits and on low thrust in near circu-

lar orbits exhibit numerical instability when solved by the method of Bond and Gottlieb (1989) for long

time intervals, These two cases are similar since both have persistent, tangential, non-conservative per-

turbations. It was found that this instability was due to secular terms which appear on the right hand

sides of the differential equations of some of the elements. In this paper this instability is removed by

the introduction of another vector integral of the motion and another scalar integral which remove the
secular terms. The introduction of these integrals which were included by Burdet (1968) require a new

derivation of the differential equations for most of the elements. For this rederivation the Lagrange

method of variation of parameters is used making the development more concise.

2.1 The Differential Equations of Motion in the Fictitious Time

The differential equation for perturbed two-body motion is

/" + J'tr = F (2.1)
-- /.3--

where r is the position vector of one of the masses with respect to the other in cartesian coordinates

and r is the magnitude of r and ( " ) = d__ Also the gravitational constant is
- dt "
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I_= G (M + m) (2.2)

where G is the universalgravitationalconstantand M and m are the masses of the two bodies. The

quantityF istheperturbationwhich can be expressedby,

£ =_e.- ,-,t)
1

(2.3)
m

where V( r, t) is the potential due to perturbing masses and P is any perturbative acceleration which is

not derived from a potential.

Equation (2.1) can be linearized (except for the perturbation) in three steps:

STEP (1) Change the independent variable from time (0 to fictitious time (s) according to the transfor-
mation

at = r (2.4)
ds

The derivatives of • with respect to t become

where ()'= d() and
ds'

where

k = r' / r (2.5)

F = r" I r 2 - r'r" / r 3 (2.6)
m

r'= • •r"/ • (2.7)

STEP (2) Embed the integral called the Laplace vector (a constant when F=0)

which becomes

when the new independent variable s is used.

STEP (3) Embed the energy integral (a constant when F=0)

ak = 2--E - i .i

which becomes

a, = _ ±,' _
r r2 - • r'

when the new independent variable is used. Note that

txk =-2 hk

where h_ is the two-body or Keplerian energy.

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Using these three steps in order, equation (2.1) becomes

(2.13)

By taking the dot product of equation

(2.14)

£ + ak£ =- _+ r2F_

which is the differential equation for the position vector r.

(2.13) with the position vector r we obtain

r +(x_r =g+r r.F

which is the differential equation for the distance r. We now change from the energy integral Ctk tO
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theJacobianintegral_tj(Bondand Gottlieb(1989))whichisgivenby

ct, = at + 2x_ - 2V(r, t) (2.15)

where cr is called the axial element and is defined by

a = co -_ x_:) (2.16)

The vector cOis the constant rotational rate of the central attracting body or orbital rate of a third body
giving rise to the perturbing potential V( r, t). In Section 4.0 it will be shown that ctj -- constant
when/P/= 0 and that o = constant when/__ = 0. Solving equation (2.15) for ctk and substituting into
equations (2.13) and (2.14) we obtain

r" + alr =- lae_+ rZF + 2(¢r- V(r, t))r -- I,m_+ Q (2.17)

and

r"+ajr=lx+rr.F +2(a V(r,t))rflx+lQ_ _ - "£ (2.18)

Note that all of the perturbation terms have been moved to the right side in equation (2.17) and (2.18).

Equation (2.17) and (2.!8) are coupled only through the perturbation terms. We will refer to equation
(2.17) as the _ differential equation since its solution provides position and velocity. We will refer
to equation (2.18) along with equation (2.4) as the _ differential equations since their solutions
provide time. Note that when there are no perturbations (that is/F/= 0 and/co/= 0) then ¢¢ehave the
two-body differential equations

r + (x._r = - _ (2.19)

and
N

r + (xjr =Ix (2.20)

and the Jacobi constant and Keplerian energy become the same

0t/ =0t k

3.....0Two Body Solution

The differential equation of motion for the two-body problem in the fictitious time was shown in the
previous section to be

M

_.r + ctjr =- __ (3.1)

The solution of (3.1) in terms of the Stumpff functions of Appendix B is

r =r_oc o + r_sc I -- 1.1,ES2C2 (3.2)

where r,, and r_#"are the initial values of r and _r', and the Stumpff functions are ct = ct(ajs2). This

can be verified by direct substitution of (3.2) into (3.1) and using the derivatives of the Stumpff func-
tions

t

CO =- (XjSCl

sc ; + c 1= co (3.3)

sc2 +2c2=ct

The first derivative of (3.2) which is the "velocity" in the fictitious time is

r = - (cxjr_.o+ I_..)scl + ._co (3.4)

In place of _ which is a constant of the motion we define the constant "delta vector"
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Now using the Stumpff function identity

co + ajs2c2 = 1

and equation (3.5) and (3.2) we obtain

r =_ +_scl + S_s2c_

similarly equation (3.4) becomes
e

r" = _ co + _sc I

(3.5)

(3.6)

(3.7)

(3.8)

The differential equation of motion for the distance r was shown in the previous section to be

r" + ajr = Ix (3.9)

The solution of equation (3.9) is similar to that for (3.1). In terms of Stumpff functions the distance is

r = roc o + rosc I + p.s2c2 (3.10)

and its derivative is

Now define the constant

r'= (_t - roctl)scl + rico (3.11)

y = Ix- roaj (3.12)

which we substitute for I.t in equation (3.10) along with the identity of equation (3.6) to obtain
#

r = ro + rosc t + ys2c2 (3.13)

Similarly equation (3.1) becomes

• = roCo + 7scl (3.14)

Now substitute equation (3.13) for r in the independent variable transformation, equation (2.4), to
obtain

dt = rods + rosclds + 7s2c2ds (3.15)

Now use the integration formula

f SmCm ds = sm+lc,n+t

which is from Appendix B to obtain the equation for time (Kepler's equation),

t = to + roS + r_s2c2 + ys3c3 (3.16)

where to is the initial time.

The integration constants which were introduced in this section are r_.o , _, ro, to, to. The new constant
_8simply replaces the Laplace vector which is a constant of two-body motion through the definition
(3.5). Similarly we note that the constant y replaces the gravitational constant (equation (3.12)). The
introduction of the constants 8 and y was done by Burdet (1968). This fact was noted by Bond and
Hanssen (1973). The Jacobian element as is the same as the two-body energy parameter a_ in the
unperturbed case is also a constant of the motion. In addition we have the axial element a which is
also a constant of the motion (see equation 2.16). This is a total of 15 constants of the motion.

The constants r_.o,_ and 8 will be treated as orbital elements associated with the spatial differential
equation (2.17) and ro, ro, 7, to will be treated as orbital elements associated with the temporal
differential equations (2.4) and (2.18).
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4,0 The Differential Equations For The Elements

When perturbations are present the elements are no longer constant. First we derive the differential

equation for the axial element O. Differentiate equation (2.16) with respect to time and substitute equa-
tion (2.1) and (2.3) to obtain

e=_. (Z.x "_r')= m. r xF =m.r x

now use equation (2.4) to change to fictitious time

(4.1)

(4.2)

Clearly a = constant when/¢_/= 0. Now we derive the differential equation for the Jacobian element
ct:. Differentiate equation (2.15) with respect to time to obtain

From equations (2.10) and (2.1)

and from Bond and Mulcihy (1988) also Bond and Gottlieb (1989)

-_V( r, t) =- to "r X -_rV( r_, t)
w

and from equation (4.1) the expression for _tj becomes

6.] = 2(-i; + _.ox/). P (4.3)

Now use equation (2.4) to change to fictitious time

aj = 2(.--_r'+ rt0 x r). P (4.4)

Note that otj = constant when/P/= 0. The Jacobian constant aj will be treated as an orbital element

for both the spatial and temporal equations since a] appears in the two-body equations (2.19) and

(2.20). Even though we have already obtained the differential equation for a: (equation (4.4)) we must
include it in the variation of parameters procedures of the spatial and temporal equations. The axial

element o appears only as a perturbation in equations (2.17) and (2.18). We have also obtained the

differential equation for o (equation (4.2)). We will include t_ in the variation of parameters procedure
for convenience and completeness.

Even though the Laplace vector will be eliminated as an element we will need the derivative of the

Laplace vector as a perturbation. This derivative as found by differentiating equation (2.8) will respect

to time, then using equation (2.1) to eliminate F, and finally using equation (2.4) to obtain

_te" = 2 _'.F)r - _ .F)_r'- _.. r')F (4.4a)

4.1 Spatial Elements

Now we apply the variation of parameters method of Lagrange to equations (2.17), (4.2) and (4.4).
Define

x__i=r

x_.2=r

X_3 = -- (Z/_..r -- _---- --X__I -- __ (4.5)
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X4_-- O"

x5=Ot j

Now differentiate equations (4.5) and use (2.1"0, (4.2) and (4.4) to obtain

Xl ----X_2

x2 = x3 + _ = x3 + _a2

x__=- xsx_2- (aL_+_) = - x_2 +_c3 0.6)
x_ = o'= G4

Where _GI= 0.Equations(4.6)can be separatedintounperturbed(i.e.,two-bodyorKeplerian)and per-

turbedparts,thatisintotheform of x"= F + G, making them suitableforLagrange'svariationof

parametersmethodasgivenby AppendixA. Inthisformequation(4.6)becomes

_-; +_2 "9_,I
x2 __3 c,_i
x_ = -x_2 + G3I (4.7)

x_ 0 G41
x_ 0 G_

whereGI, G_2,G3, G4, G5 aredefinedfromequations(4.6).The arrayofconstants,whichwillbecome

thenew dependentvariables,isdefinedas

where

c r = _r, 13T,8r, Or,IXj) (4.8)

and of course o and otj
Dx ,

differential equation for c, has the form, _c c = _Gwhere

0xl _xl Dxl

Da_ DI3_D_
0x2 bx2 Dx2

___----r__ =Xl(0 )

1_=_ =x2(O)

_8= - _j__a- _ = x.3(O) •

which have already been established as constants

t •

Dx_i71Dx_

Dx

Dc

Dix_D_ D_ Do D_2
DX 3 DX3 DX3 DX__3 DX3

D_ D_ D_ Oo D_j

Ox4 Ox4 Ox4 Dx4 Ox4

O_ D_ D_ Do D_j

bx5 Ox5 Dx5 Dx5 bx5

D_ D_ D_ _ Daj

(4.9)

of the motion. The

OAo)

Noting from Section (3.0) that

xt = r = Ix+ [3SCl+ 8_s2c2 0.1D

•_2=/= _+o+ _sse,
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andfromequation(3.5), (4.5) and (4.9)

x3 = ctj (_a- r) + _8

also

X4=O

X5=_1

The differential equations become

0r]t Isct Is2c2 0

to] _co zsc, 0 _:|I _: _,"
- _az / - _6_2

[0] -lajsc_ lCo 0 aa, i 8_" = G_3
if' G4

£T £T oT I _ j aJ G soT o_ or o ,.

(4.12)

(4.13)

where we have used the identity from Appendix B

C 0 = 1 -- 0_j$2C2

also, I is the 3 by 3 identity matrix; [0] is the 3 by 3 null matrix; 0 is a column vector with 3 com-
ponents; Or is a row vector with 3 components. Equation (4.13) yield_ the equations

, , _r
_ + _'sc_+ 8'_2c_+ a_ = o

, _r"

fJ'co + 8_'scx + Ct_-_-'j = Q (4.14)

• _X_3

- _.'o_:c,+__'co+,_,-_-;-=-_k -

d=r(o'r xF

a.; = 2(-r' + ro_ x r_)• P_

where we have restored the original notations for Gt, G2, G3, G4, G5. Now using the partial deriva-
tives,

(4.15)

igr _ci _c2

_r" _co _ _c l

3z_3 _r

3aj =ct-r- ctj-ff_--j

where the Stumpff function derivatives are

OCo 1 2 (4.15a)
=-_s c,

_ct 1
--(ck-t - kck) , k>l

_a: 2al

and other Stumpff function identities from Appendix B equation (4.14) can be solved simultaneously,
omitting several algebraic steps to give
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[ ts_'=Q=,scl-,£Co +=j + 2=,13,'e,+
o

a =ro_.r xF

aj = 2(-r' + r_ xr).P

(4.16)

where et = ct(4Ots s2) as discussed in Appendix B. In the reference Bond and Gottlieb (1989) the

coefficient of the factor ct_g in the differential equation for 13had a secular term. This term does not

appear in equation (4.16). Note that the Laplace vector (1_..) has been entirely removed from the formu-
lation. The derivative of the Laplace vector (lXe_')remains but only as an abbreviation for the perturba-

tions given in equation (4.4a).

4.2 Temporal Elements

Now we apply Lagrange's variation of parameters method to equations (2.18), (2A) and (4.4). Define

yl=r

y2=r"

Y3 = la - asr (4.17)

y4=t

ys=_s

Note that ors is the only element which is common to both the spatial and temporal systems. Now

differentiate equations (4.17) equation (2.18), (2.4), and (4.4) become

Yl =Yz

1
=y3 + r Q .r=y3+g2

= - YsY2 - ot_,r = - YsY2 + g3 (4.18)

=Yl

=_=g5

I = 0 and g4 = 0.

Y_

y;

yk

Where g

where gl, g2, g3, g4, g5 are defined by equation (4.18). The

new dependent variables are

_:r = (a, b, 7, x, us)

Equation (4.18) can also be expressed in the form y" =f + g
r

Yll Y2 gl

Y21 Y3 g2

Y3I = -YD'21 + g3 (4.19)

Y41 Yl g4

YsI 0 j .g_

array of constants which will become the

(4.20)

a =to =y_(0)

where
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b = i'o= y2(O)

Y = la- _a = y3(O)

"c= to= y4(O)

and txI has alreadybeen establishedas a constantof the motion.

The differential equations for __ (having the

"0yl

/}a

0y2
3a

0y3
/)a

0y,
0a

0y5
0a

fOITIl

ayl ayl ayl
Ob aV

Oy2 Oy2 _y2
Ob _

Oy3 Oy3 Oy3
Ob o_ ax

OY4 Oy4 Oy4

Ob _

0y5 0y5 _y5
Ob aV

-'__K"= g ) becomes

0yl
oat

Oa_

Oy3
Oaj

_y4

Oy5
Oaj

but from equations (3.12), (3.13), (3.14), (3.15)

Yl = • = a + bSC l + ys2c2

Y 2 = r" = bco+ ysc I

and (4.21)

y3=_t-ajr =y+ctja-afr =y+aj(a-r)

Y4 = t = "f + as + bs2c2 + ys3c3

y5=al

gl

g2

= g3

g4

g5

(4.21)

(4.22)

(4.23)

So we can evaluate the matrix elements in (4.22) to obtain

1 sc, $2C2 0 _--_j 1

0 Co SCl 0 Or' !a
f

o -al scl co 0 _aj ' _ =
I "C

S $2C2 $3C 3 1 _ aj

D 0 0 0

Equation (4.24)when expanded yields,

' • Or

a + b'sc I + is2c2 + _J-_l = 0

, , Or" 1

b'co+yscl+ _j_ = rQ. •r

• , , Oy3 ,

- b ajscl + yCo + tx_-_----= - rat
ottj

igl

g2

g3

g4

g5

(4.24)

(4.25)
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, , Dt

a's +b's2c2+ys3c3+'c + 0tj_-j-j =0

aj=2(-r +r o) xr).P

Where we have restored the original notations for g2, gs and g5. We evaluate the partial derivatives in

equations (4.25) using equations (4.23)

Dr , Dcl 2Dc2

Dr" Dco Dc 1

a-g,=bgg-=+
(4.26)

Dy 3 Dr

D_j a r aj D_l

Dt 2 Dc2 Dc 3

Daj - bs _ + ys 3 3al

where the Stumpff function derivatives are given by equations (4.15a). Equations (4.25) can be solved

simultaneously for the derivatives,

• 1 [a 14: ta =-r r'Qsct-txj s2c2+2bsSes+-_ys c2

b'= 1 [a )]--r • Qco + a'j SCl + bs2_2- YsS(2_3-c:2 (4.27)
r--

1 [ 1 s4c"i = -rr_ "12_:scl + _, - aco + _a:sSe3 + _'_ 22]

1 aj[a 1.42 )1x" = --r • Qs2c2 + sScs + -2os c2 - 2ysS(cs-4esr-

As in the development of equations (4.16) the Stumpff function identities of Ap,pendix B have been
used. In the reference Bond and Gotdieb (1989) the coefficient of the factor ala in the differential

equation for b had a secular term. This term does not appear in equation (4.27).

It is useful to note that

Ix = Y + % a (4.28)

is an integral of the system of equations (4.27). From equations (4.27) it is easy to show that

y' + a'cx.l + a _tj = 0 (4.29)

which can be integrated to give

y + a o_I = constant (4.30)

By comparison of equation (4.30) to equation (4.21) the constant of integration is the gravitational con-

stant Ix. Therefore it is not necessary to compute y from its differential equation. We can compute y

from equation (4.28),

y = Ix - %a (4.31)

5.0 Minimization Of Perturbations

The variation of parameters approach is not dependent on the magnitude of the perturbation. No

assumption on the size of the perturbation is required in order that the method be rigorous. However,
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small perturbations enhance the efficiency, speed, and accuracy of any perturbation method. In the
method described in this paper, the embedding of the Jacobi integral has the effect of introducing a per-
turbation parameter/to.../that is the rotational speed of the planet, or the mean motion of the perturbing
third body. To prevent this perturbation from becoming too large the following modification is offered:

Let,

o = 60 + A6 (5.1)

where Oo is the initial value of 6 and A6 is the change in 6. In effect we can let A6 replace 6 so that
the differential equations reflect only changes in 6. Substitute equation (5.1) into equation (2.17) to
obtain

L + asr = - _+ r2F + 2(60 + a6 - V(L, t))£

Now since _o is constant we can move it to the left side of this differential equation to get

T*' m_ + (O_s- 2_o)r = - I__ + r2F + 2(A_ - V(L , t))r (5.2)

Similarly equation (2.18)becomes

r" + (_s - 2ao)r = IX+ rr • F + 2(A6 - V(,L, t))r (5.3)

This change does not affect the outcome of the variation of parameters approach taken here. This
change is only a computational convenience and is in effect in the computational procedure of Section
6.1 where the element _s is actually _s - 2cro and cr is actually A¢_. Note that the initial value of A6
is

Ao = 0 (5.4)

6.....0Application

In this section the most important equations are collected and listed in a logical order suitable for com-
putation. Also two numerical examples are presented.

6.1 Computational Procedure

Given r_a,v_o,to findr(t) and v(t).

STEP 1 Initialization

s=0

a=ro

b =_ "v_.o

"c= to

a_= r_.o

_.=av_o

Evaluate Perturbations Vo,

v..o" vo -21/'o

276



y=_-_ a

-- ro

0--0

STEP 2 Transform Elements to Coordinates

,_= a_+ pscl + _2c2

__= p.c.+ __cl

x_.3= _,,_-_r) + S_

y=p-ocj a

r = a + b$Cl + ys2c2

v = r'/r

n

r =boo +yscx

t = '[ + as + b$2c2 + y$3c 3

STEP 3 Evaluate Differential Equations For The Elements

_V
F=P -_

_r

p,.= r=£ + 2.,(-v + a )

a_ = 2( -_r'+ r_ x_r). P_.

= 2 (.(. £)__- _. _F)_r'-E. _r')r_

' [,_ ±°'_]-- Otj 0t$2C 2 +=-e$_,-_- +21_'_ 2_=_j

• .'[__ - _ _)]_j" ----QCa 4" ]__$CI 4" ,j C ! + _52_2 8.$3(2_3 ClC

_8'=O.a.,sct - _Co + L2.Co+ 2aj__s3e3+ -_8_ajs c2

__ ,[a 2 1 4: ta' = r-lr " o'sc t - al s c 2 + 2bs3_ 3 + -_W c 2

--r • Q,c o + (Xj $c I + b$2_2- "_$3(2_3-clc
r-

[ ]"i = 1-'rr-"p,cz_scl+ ctj, - aCo+ 2bo_.,s3_3+ -_js c2

'[as 1.4 2 )]"['= lrr- " _$2C 2 + {Xj 3C3 + "_-O$ C 2 - 2"_$5(C y-.4_ 5

STEP 4 Numerically Integrate Over As To Obtain Elements At s + As

(optional)
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S_P5

s =s +_,S

Go back to step 2.

6.2 Numerical Applications

The equations of the BG14 _8element method given above in Section 6.1 were programmed as nearly as

possible in the same format as the older BG14 e method (Bond and Gottlieb, 1989). The two methods
were then compared to reference cases. The RK45 numerical method (Fehlberg, 1969) was used as the

numerical integration method in both examples.

6.2.1 Example 1

The first example is that of a highly eccentric (e = 0.95) orbit about the Earth. The orbit is subject to

the Jz (Earth oblateness) perturbing potential, which is conservative, plus lunar perturbations. This

orbit was computed by both BG14 8 and BG14 e methods. This example was also computed by Stiefel
w

and Scheifele (1971) with extremely high precision and will be used as the reference. Table I shows

the components of the position vector in Cartesian coordinates as computed by each method after 50

revolutions of the satellite. It is seen that both methods compare very closely with the reference but the

new BG14 8_method being slightly closer to the reference.

The problem description for the first example is:

Coordinate system: X and Y fixed in Earth equatorial plane; Z perpendicular to Earth equatorial plane.

Initial conditions:

Initial State Vector

Position t 0.0 -5888.9727 -3400.0 t kmVelocity 10.691338 0.0 0.0 km/sec

The time of comparison is at 288.12768941 days, after approximately 50 revolutions.

TABLE I - Comparison of BG14 8 and BG14 e Methods
m

Final Value Of Position Vector

Method X (kin) Y 0crn) Z (kin) Steps/Rev

(Avg)

REFERENCE -24219.0503 227962.1064 129753.4424 500

Stiefel and Sheifele (1971)

BG14 (RK45 Fixed Step) -24218.8175 227961.9146 129753.3431 62
Method

-24218.8069 227961.9186 129753.3344 62BG14 (RK45 Fixed Step)
Method

The Earth oblateness and lunar models used are somewhat idealized and are taken from Sriefel and

Scheifele (1971). These models are specified as follows:

The Earth oblateness perturbations were compared from the potential model
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where

GE = 398601 km3/sec 2 (gravitational constant of Earth)

a, = 6371.22 km (equatorial radius of Earth)

J2 = 1.08265 x 10 -3 (second harmonic of geopotential)

The lunar perturbation was computed from

- Ir - al 3

and the lunar ephemeris is approximated by

az = 13 sin I2t

ay =- -_-- pcos_

1

a_ =-_pcos_t

p = 384400 km (the Earth-Moon distance)

= 2.665315780887 x 10-_ rad/sec (Moon orbital rate)

GM = 4902.66 km3/sec 2 (gravitational constant of Moon)

6.2.2 Example 2

The second example (Adamo, 1989) is that of a near circular geocentric satellite orbit numerically

integrated by the BG14 8 method from an initial altitude of 300 km down to entry interface altitude of

123.278 km (66.565 nautical miles). The perturbations considered were the Jacchia 1970 atmospheric

model and the GEM-10 (Lerch, 1979) geopotential restricted to second order and degree. The time of

flight was about 29.736111 days and the ballistic number was 78.606675 kg/m 2. This case failed at an

altitude of approximately 135 km (72.894 nautical miles) with the older BG14 e_ method.

Coordinate System: True Equator and Greenwich Meridian Of Epoch

Initial conditions:

Initial State Vector at UT1 = 0 on 3 September 1991.

Position 6677832.962 -62810.44513 -27301.63472 [ m

Velocity 78.98607579 6821.102837 3626.863958

TABLE II - Comparison of BG14 8 and BG14 e_.Methods
Final Value Of Position Vector

Method X (m) Y (m) Z (m) Steps/Rev

(Avg)

BGI4 (RK45 Variable Step) 2664837.2 -5838760.8 1033865.4 29
8 Method

BG14 (RK45 Variable Step) FAILED FAILED FAILED
e Method

Additional stress cases (not shown) have been computed in which the solution was propagated down to

the surface of the Earth (assuming no change in atmospheric density below 90 kin).
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7.0FinalComments

Recent numerical studies on atmospheric entry from near circular orbits and on low thrust in near circu-

lar orbits exhibit numerical instability when solved by the method of Bond and Gottlieb (1989) for long

time intervals. These two cases are similar since both have persistent, tangential, non-conservative per-

turbations. It was found that this instability was due to secular terms which appear on the right hand

sides of the differential equations of some of the elements. In this paper this instability is removed by
the introduction of another vector integral of the motion and another scalar integral which remove the

secular terms. The introduction of these new integrals require a new derivation of the differential equa-

tions for most of the elements. For this rederivation the Lagrange method of variation of parameters is
used making the development more concise.
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AppendixA - TheVariationOfParametersMethodOfLagrange

Assume that we have a mechanical system given by

x_"=f(x,t)

where

and t is the independent variable.

x r = (xl,- • • :.)

£r = q'l," " " :.)

(A1)

We also assume that the solution of the system of equations (AI) is possible and can be

expressed

x = x_, t) (A2)

where the integration constants, or parameters, are given by

c r = (c 1," " " ,c,) (A3)

Now consider another system similar to the system (A1),

x_"= L(Y_, t)+ g_, t) (An)

where the new term is called a perturbation and is given by

gr_, t) = (el,. " " ,g,) (A5)

The objective is to make the solution, equation (A2) of the system (A1), valid for the perturbed

system (A4) by allowing the parameter c to be a function of the independent variable. In other
words the solution (A2) still applies but with the constant (£.) replaced by the function (c(t)).

So we have

x_ = x_(t), t) (A6)

Now take the total derivative of equation (A6)

_x . _x (A7)
x_"= __ + at

Also take the total derivative of (A2) and use (A1) to obtain

____x= i = f (y_, t) (A8)
3t -

Note we have used the fact that for unperturbed case the total and partial derivatives of x are the
bx

same. Using equation (A8) we can eliminate the partial derivative -_- from equation (A7)

obtaining,

_x . + f _, t) (A9)= __

Now compare equation (A9) with equation (A4) to obtain

_x.

x_"= --_cc +f_, t) =_(y_, t) + g_, t)

After the obvious cancellation

_x . (A10)
_c c = g

_x .
where the matrix -_c Is obtained from the solution, equation (A2). The matrix must be inverti-

ble. That is
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The system of differential equations for the parameter c is therefore

(A11)
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Appendix B - The Stumpff Functions

These functions are related to the trigonometric and hyperbolic functions. The general equation

for the n th Stumpff function is,
m

C,(Z) = ]_(-1) _ Zk
t=o (2k + n)! ' n=0,1,2 .... 031)

When these series are compared to the series of the trigonometric and hyperbolic functions, the

following relations exist:

c4(x2)=

etc.

CoCXz) = cos x

c x(x z) sin x
X

c2(x2) _ 1 - cos x
X 2

c3(x2) _ x - sin x
X 3

1
x 4

,or co(-x2)= coshx

,or cl(-x2)= s_..inhx
X

, or c2(-x2) _ cosh x- 1
x 2

,or c3(-x 2)- sinhx-x
x 3

t"

coshx - l1

, Or C4(--X 2) = X4

L

032)

The following identities may also be easily verified:

Co(z)2 + zc l(Z)2 = 1

Co(Z)2 - zq(z) 2= Co(4Z)

Co (7,)2 = ] -- 2Zc2(az)

c l(z) = 2c 2(4Z)

Co(Z)Cl(Z) = ct(4z)

c2(z) = cx(z) 2- c2(Z)Co(Z)

The more general identities

and

are also valid.

c,z . c,.,]cn+2(z)= n

1
c.(z) + zc.+2(z) -

n!

(B3)

(B4)

035)

The derivatives of these functions may be expressed as

2z dc_(z) = c,_l(z) - nc_(z) , n>O
dz

and

dc,(z) 1 c_+l(z)]= -_ [nc_+2(z)-

A convenient integration formula is

Is _ck (ps2)ds = Sk+l Ci+I(pS 2)

036)

037)

038)
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IMPROVED ACCURACIES FOR SATELLITE TRACKING

P. C. Kammeyer, A. D. Fiala, P. K. Seidelmann
Orbital Mechanics Department, U.S. Naval Observatory,
Washington, D.C. 20392

ABSTRACT

A CCD camera on an optical telescope which follows the stars can be used to provide high
accuracy comparisons between the line of sight to a satellite, over a large range of satellite
altitudes, and lines of sight to nearby stars. The CCD camera can be rotated so the motion
of the satellite is down columns of the CCD chip, and charge can be moved from row to

row of the chip at a rate which matches the motion of the optical image of the satellite
across the chip. Measurement of satellite and star images, together with accurate timing of
charge motion, provides accurate comparisons of lines of sight. Given lines of sight to
stars near the satellite, the satellite line of sight may be determined. Initial experiments with

this technique, using an 18 cm telescope, have produced TDRS-4 observations which have
an rms error of 0.5 arc second, 100 m at synchronous altitude.

Use of a mosaic of CCD chips, each having its own rate of charge motion, in the focal

plane of a telescope would allow point images of a geosynchronous satellite and of stars to
be formed simultaneously in the same telescope. The line of sight of such a satellite could
be measured relative to nearby star lines of sight with an accuracy of approximately 0.03
arc second. Development of a star catalog with 0.04 arc second rms accuracy and perhaps
ten stars per square degree would allow determination of satellite lines of sight with 0.05
arc second rms absolute accuracy, corresponding to 10 m at synchronous altitude.

Multiple station time transfers through a communications satellite can provide accurate
distances from the satellite to the ground stations. Such observations can, if calibrated for

delays, determine satellite orbits to an accuracy approaching 10 m rms.
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INTRODUCTION

The U.S. Naval Observatory, as part of its primary mission, makes accurate astrometric
observations of stars and solar system objects, maintains the Master Clock of the United
States, and makes precise time comparisons between that clock and other time standards
around the world. As a by-product of these activities, techniques for improved satellite
tracking have been developed.

Charge coupled device (CCD) chips are light sensitive integrated circuits used in astronomy
for photometric and astrometric observations. Some of the characteristics applicable to
artificial satellite observations with a telescope guided to follow the stars are that

1) high quantum efficiency permits short exposure times,
2) pixel and image sizes permit accurate determination of the centroid of the image,
3) variable read-out rates permit accumulating into pointiike charge images photoelectrons

from a satellite optical image moving across the chip as well as from star images
fixed on the chip,

4) observations can be read directly from chip to computer for immediate, automated
analysis, and

5) mosaics of CCD's can be operated so that one CCD tracks a satellite and others
accumulate star images, allowing relative positions to be determined accurately.

The characteristics of the CCD detector mean that a relatively small telescope, of 20-50
centimeter aperture, can be used. The trade-off between field of view, duration of

observation, and accuracy of observation is dependent upon the size of the CCD or mosaic,
the size of the pixels, and the telescope specifications. Depending on the operational
requirements, specific instrument designs and observational procedures can be
implemented. With computer control, the entire process of obtaining images and extracting

from them satellite line of sight information can be performed autonomously.

Equipment used for time transfer through communications satellites allows measuring

accurate ranges from ground stations to a communications satellite. High accuracy orbits
can be determined from the range data. Calibration of range biases can be accomplished by
high accuracy optical observations;

OBSERVATIONS OF TDRS-4

Observations are made with a Photometrics series 200 CCD camera containing a 1024 by
1024 Thompson CCD chip which has a photosensitive area 2 centimeters on a side. Each
pixel of the CCD covers a region of the sky 2.4 seconds of arc on a side, and the CCD chip
covers a region 40 arc minutes on a side. The CCD camera is attached by a rotator to a 18-
cm-aperture telescope of 168-cm focal length, guided to follow the stars. The rotator
allows aligning the columns of the CCD chip with the direction of satellite motion relative
to the stars. By controlling the rate of motion of charge along columns of the CCD chip, it
is then possible to accumulate photoelectrons from the satellite image.
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Observationtimesandfieldsarechosensothatthesatelliteobserved,TDRS-4,will bein
thesamefield with tworeferencestarsin a starcatalog.Thetelescopeis pointedtothe
directionof thecenterof thedesiredfield andtheCCDcamerais rotatedsothatthesatellite
imagemovesalongCCDcolumns.Whenthesatelliteisnearthecenterof thefield, the
shutteris openedandtheCCDcontrolleradvanceschargefrom row to rowof theCCDat a
ratematchingthemotionof thesatellite.Thischargetransferis identicalto thecharge
transfernormallyaccomplishedwhenreadingout theCCD chipafteranexposure,but is
commandedrow byrowby aspeciallydesignedtimingcircuit. Thiscircuit causesa
uniformly spacedsequenceof chargeadvancesandallowsthetimesof chargeadvanceto
beaccuratelydetermined.

After apre-fixednumberof rows is transferred(40in thepresentcase),dependingon the
brightnessandthustherequiredexposuretimeof thesatellite(6secondsin thepresent
case),chargetransferstopsandtheshutterisclosedfor afew seconds.At theendof
chargetransfer,thechargeimageof thesatelliteextendsoveronly afew pixelswhilestar
imagesaretrails40 rowslong (Figure1a).

Theshutternextopens,for astarexposurewithnochargemotion,to form thecharge
imagefoundin Figurelb. While theshutteris closedbeforethisexposure,thereis an
intervalof chargeadvanceandthereis anintervalin whichchargedoesnotmovebut the
satelliteopticalimagecontinuesits motiondownwardin thefigure. Theshutterlastopens
for a starexposurewhichformsthechargeimageshownin Figurelc. Thereis again
beforethisexposureanintervalof chargeadvanceandanintervalwith nochargemotion.
Thedurationsof thestarexposuresare2 seconds,sufficientto allow accuratemeasurement
of thecentroidsof thestarimages. After theshutterclosesfor the lasttime,chargeis read
outof theCCDchip.

MEASUREMENT OF IMAGES

The satellite charge image at the end of the satellite exposure is the sum of the charge
images produced in the intervals between charge advances. The centroid of the
distribution, at the end of the satellite exposure, of the photoelectrons produced in a
particular interval is the centroid of the optical image of the satellite at the middle of the
interval, advanced by an integer number of rows. The centroid of the final satellite charge
image is thus the centroid of the optical image of the satellite at the midpoint of the satellite

exposure, advanced by the average of the amounts by which the summed images are
advanced.
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ObservedCCDframesaxe analyzed with an interactive image processing program which
displays a CCD frame on a screen and allows adjustment of brightness and contrast for
maximum visibility of star and satellite images. Using a mouse-controlled arrow displayed
on the screen, the user indicates the point image of the satellite and the two point images of
each reference star. The program locates the brightest pixel near each indicated position
and forms a smaller, 7-by-7 subimage centered on this brightest pixel. From each pixel
brightness in the subimage is subtracted the average of the brightnesses of all pixels in the
subimage. The center of the subimage is calculated to be the centroid of the pixels with
positive differences, each such pixel weighted by its difference value.

The determined satellite position for a CCD frame corresponds to the position, with respect
to the midpoint of the great circle arc connecting the reference stars, of the satellite at the
observation time. Displacement components are measured in pixels in the direction of
satellite motion and in an orthogonal direction. The distance in pixels between the reference
star images is also measured.

COMPARISON OF MEASURED POSITIONS TO DETERMINED ORBITS

Following each night of optical observations of TDRS-4, Goddard Space Flight Center
provides satellite positions and velocities at two-hour intervals from an orbit fit to a span,
including the time of the optical observations, of radio data. A numerical orbit integrator is
used to calculate the position of the satellite at the time of each satellite observation.

An observation simulation program calculates the observed lines of sight of the two
reference stars for each CCD frame, and the distance between them, on the basis of

positions in the star catalog. Simulated lines of sight are calculated by applying refraction
to apparent places which include proper motion, precession, nutation, and that part of
aberration due to the motion of the center of mass of the Earth.

Together with the reference star lines of sight, the observation simulation program
calculates for each frame the line of sight to the satellite at the observation time. The
satellite line of sight includes the effects of refraction, the motion of the satellite in the light
time to the observer, polar motion, and the difference between UT1 and UTC. The satellite
orbit as provided by Goddard Space Flight Center is with respect to true of date coordinates
with the FK4 equinox, while Earth orientation and star positions are given with respect to
true of date coordinates with the FK5 equinox. To convert satellite positions to true of date
coordinates with the FK5 equinox, the satellite is displaced forward 0.070 second of time
in its orbit.

From the lines of sight are calculated the components, in the direction of satellite motion
and an orthogonal direction, of the displacement to the satellite line of sight from the
midpoint of the great circle arc connecting the reference star lines of sight. That part of
aberration due to the rotation of the Earth is included neither in the simulated star nor

satellite lines of sight.
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Theobservationsimulationprogramcalculatesall distancesin radiansandconvertsthese
valuesto pixels,usinganangularpixel sizewhich is constantfor anight'sobservations.
Thesimulationprogramisrunoncetodeterminetheangularsizeof apixel (thescale of the
frame) by comparing the observed sum of distances between reference stars with the sum
calculated using an assumed pixel size. A second run of the simulation program uses the
angular pixel size calculated in the fhst run.

We consider the measured position of each image to be the sum of a random position
measurement error and a measured image position averaged over all possible variations in
atmospheric refraction and over all possible image measurement errors. We further
consider that the line of sight of each reference star, calculated from its catalog position and
a mean refraction value, differs from the line of sight corresponding to the mean image
position by a catalog error with zero mean.

Figure 2 shows, for CCD frames made in observing sessions near 0 hours UT on
December 10, 11, and 13, the deviations of measured from calculated distances between

reference stars. Each deviation is the sum of the position measurement error and the
catalog error along the great circle connecting the stars. The root mean square value of the
deviations is 0.49 arc second.

The star catalog used is the Astrographic Catalog Reference System (ACRS) catalog
developed at the U.S. Naval Observatory by Corbin and Urban (1990) to provide the most
accurate high-density reference catalog (325,000 stars) available. The standard deviation
in each coordinate is 0.21 arc second for 1990. This error contributes 0.30 arc second to

the root mean square difference of calculated and measured distances between two
reference stars. Differences of refraction with star color add a further error, since no filter

is used in the optical system. Errors in the distance due to variations in atmospheric
refraction and those introduced in the process of recording and measuring star images must
together have approximately 0.38 arc second standard deviation in order for the sum of the
square of this standard deviation and the square of the standard deviation of catalog error to
reach the observed (0.49 arc second)2. Dividing by the square root of 2 gives the value

0.27 arc second, or 0.12 pixel, for the standard deviation of each component of the
position measurement error.

Figure 3 shows the displacement of measured from calculated TDRS-4 lines of sight on
three nights in December 1990. Different reference stars are used for each observation.
The rms value, for all observations on the night of December 10, of the displacement of the
measured from the calculated satellite line of sight is 0.25 arc seconds; corresponding
values for December 11 and 13 are 0.58 and 0.55 arc second. An angular displacement of
0.5 arc second, 0.2I pixel, corresponds to a linear displacement of 100 meters at
synchronous altitude. The mean displacement of measured from calculated lines of sight is
within 0.5 arc second of a constant one arc second westward offset for each night.
Changes from night to night in the mean displacement are consistent with the accuracy
stated for the provided satellite ephemerides. The cause of the one arc second offset is not
at present understood. Possible causes of the offset include software errors and

misunderstanding of the coordinate system used for the provided orbit.
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We alsoreducedthedatausingtheSmithsonianAstrophysicalObservatory(SAO)star
catalog.As expectedfrom theknownerrorsin thiscatalog,rms deviationsof measured
fromcalculatedsatellitelinesof sightweretwiceaslargeasthosein linesof sightmeasured
bycomparisonwith theACRScatalogstars.Theimprovementproducedby usingthe
ACRScatalogratherthantheSAC:)starcatalogpointsout the importanceof usingthemost
accuratestarcatalogavailableandtheneedfor high-densitystarcatalogsconsiderablymore
accuratethanACRS.

HIGH ACCURACY SATELLITE LINE OF SIGHT DETERMINATION

BY OPTICAL OBSERVATIONS

An instrument for high accuracy optical satellite observations might consist (Kammeyer,
Fliegel, and Harrington, 1990) of a 0.5-meter aperture telescope of 4-meter focal length
with a 2000 by 2000 pixel CCD focal plane assembly having 20 micron pixels (Figure 4).
The focal plane assembly could be either a single, specially designed CCD chip, or a
mosaic of CCD chips. When observing a satellite, part of the focal plane assembly would
form point images of stars and part would form a point image of the satellite (Figure 5).
The time required for the optical image of a geosynchronous satellite to cross the focal
plane assembly, which corresponds to a 30 by 30 arc minute region of sky, is two minutes.
A narrow bandpass filter is shown, which reduces the number of photoelectrons to 8000
per pixel for an image of 3 pixel radius, exposed 40 seconds, of a magnitude 10 star (filter
transmission is 50% and CCD efficiency is 40%). Such a narrow bandpass makes
refraction differences with color insignificant.

By making several exposures in the crossing time of a geostationary satellite, the line of
sight to such a satellite could be located to perhaps 0.03 arc second rms relative to nearby
stars. This includes a one-fortieth pixel error due to causes within the CCD (Monet, 1988)

and an error of 0.01 arc second due to atmospheric turbulence (Han, 1989). If several
stars in the field of the telescope had lines of sight known to an absolute accuracy of 0.04
arc second rms, the line of sight of the satellite could be determined with an absolute
accuracy of 0.05 arc second, corresponding to 10 meters at synchronous altitude.

The ideal source of star positions would be a star catalog with 0.04 arc second rms
accuracy and approximately ten stars per square degree. An alternative approach, too
expensive to apply to more than a Small number of ground stations and geostationary
satellites, would be to measure relative star positions in small regions along the observed
paths of the satellites. Calibration with the U.S. Naval Observatory optical interferometer
could be used to convert the relative measurements of star positions in each region to
absolute star positions. The optical interferometer will be able to measure star positions
with an accuracy better than 0.01 arc second.
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Anothertechniquefor determininganabsolutelineof sightfor asatellitewouldnotrequire
theuseof absolutestarpositions. In this technique,onewouldobservepassagesof a
GlobalPositioningSystem(GPS)satelliteandof thegeostationarysatellitethroughthe
samestarfield. Thermserrorin locatingtheline of sightof aGPSsatelliterelativeto
nearbystarswith thedescribedinstrumentisexpectedto beapproximately0.04arcsecond
(Kammeyer,et al., 1990).This includesa one-fortiethpixel errordueto causeswithin the
CCD(Monet,1988)andanerrorof 0.025arcsecondduetOatmosphericturbulence(Hart,
1989).Excludingerrorin theGPSephemeris,theline of sightof thegeostationarysatellite
nearits crossingof thepathof theGPSsatellitecouldbedeterminedto anaccuracyof 0.05
arcsecond.GPSephemeriserror,approximately0.025arcsecond(2.5meters)for aGPS
definitiveorbit atpresent,raisesthelineof sighterrorto 0.06arcsecond.

SATELLITE TRACKING USING TIME TRANSFER TECHNIQUES

Time transfer at the nanosecond level between widely separated radio transmitters using
communications satellites is a new technique currently in its experimental stages. It uses
spread spectrum coding techniques developed by Hard et. al. (1983, 1985). The
experiments are being currently conducted by the U.S. Naval Observatory, in collaboration
with National Institute of Standards and Technology in Boulder and National Research
Council in Ottawa. The experiments involve the SBS-3 communications satellite and
ground stations in Washington, DC, Boulder, CO, Ottawa, ONT, and Miami, FL.

This technique has also been used for range measurements from one station. These

measurements demonstrate an rms scatter of 1 nanosecond in round-trip time,
corresponding to 30 cm in round-trip distance, over 5 minutes (W. Klepczynski, USNO,
private communication).

Microwave transmissions are subject to many influences: atmospheric effects, placement of
equipment at the ground station, orientation of the spacecraft, etc. However, transmission
is independent of clouds and daylight, and the other effects can be brought down to less
than 30 cm rms in rang,:. The combined effect of all error sources is to produce a satellite to
ground station range error less than 40 cm rms.

By using simultaneous ranging from three ground stations, the position of the satellite can
be determined uniquely through triangulation. For three ground stations spread over
approximately 2000 km north-south and east-west, 40 cm range errors will produce errors
in satellite position of approximately 10 m rms.

Ranging measurements with this technique are limited to communications satellites.
However, ground stations installed for time transfer purposes could be used intermittently
for tracking. The stations should be selected or established with the widest possible
separation in both east-west and north-south coordinates. If optical calibration observations
were also applied, then a tracking operation might be inexpensively conducted with 10 m -
20 m rms error.
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Abstract

This paper presents the description, results, and interpretation of

comparison testing between the High Accuracy Inertial Navigation

System (HAINS) and KT-70 Inertial Measurement Unit (!MU). The

objective of the tests were to demonstrate the HAINS can replace the

KT-70 IMU in the space shuttle Orbiter, both singularly and totally.

This testing was performed in the Guidance, Navigation, and Control

Test Station (GTS) of the Shuttle Avionics Integration Lab (SAIL) at the

Johnson Space Center. GTS is a space shuttle simulator which is

primarily utilized to evaluate and verify the flight software that

operates the shuttle's five General Purpose Computers (GPC).

A variety of differences between the two instruments are

explained. Besides being smaller and lighter, the HAINS has the

capability to be internally torqued by commands from a GPC.

Four, 5-day test sessions were conducted varying the number and

slot position of the HAINS and KT-70 IMUs. The various steps in the

calibration and alignment procedure are explained.

Results and their interpretation are presented. The HAINS

displayed a high level of performance accuracy previously unseen

with the KT-70 IMU. The most significant improvement of

performance came in the Tuned Inertial/Extended Launch Hold tests.

The HAINS exceeded the 4-hour specification requirement. The results

obtained from the SAIL tests were generally well beyond the

requirements of the procurement specification.

The performance of the HAINS in the SAIL demonstrated the

transparency of operation with respect to the KT-70 IMU. In addition,

the concept of an internally compensated INS is compatible with the

Orbiter avionics systems and flight software.

Purpose and Introduction

This paper presents the description, results, and interpretation of

comparison testing between the High Accuracy Inertial Navigation

System (HAINS) and the KT-70 Inertial Measurement Unit (IMU). The
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objective of the tests were to demonstrate the HAINS can replace the

KT-70 IMU in the Space Shuttle Orbiter, both singularly and totally.

Both pieces of hardware are products of the Kearfott Guidance and

Navigation Corp, Wayne, N.J.

Four test sessions were conducted during May, June, July, and

August, 1990, in the Shuttle Avionics Integration Lab (SAIL) Guidance,

Navigation, and Control Test Station (GTS) located at the Johnson Space

Center, Houston, TX. GTS is a six degree-of-freedom space shuttle

simulator which is primarily utilized to test the flight software that

operates the shuttle's five, IBM AP101S General Purpose Computers

(GPCs). These GPCs have a 256K bit memory and employ parallel

processing of data.

The KT-70 IMU is presently in use aboard the three operational

space shuttles. It provides accurate velocity and attitude information

for use in the shuttle's GN&C systems. The inertial sensors contained in

the four gimbal platform are two GYROFLEX gyroscopes and two force

rebalance accelerometers. One and 8-speed resolvers are utilized to

provide digital gimbal angle readouts. The KT-70 IMU consists of an

all-attitude stabilized platform and associated electronics to supply

output data. The Orbiter employs a triple redundant IMU configuration

with skewed inertial clusters. This geometry provides failure detection

and isolation techniques. The IMU Subystem Operating Program (SOP)

is software that functions during factory calibration/test, hanger

calibration, and preflight calibration and alignment. In-orbit IMU

updates are provided by on-board star trackers, which are mounted

on a common navigation base. The IMU interface to the Orbiter's GPCs

is accomplished via a multiplexed serial data line. The KT-70 IMUs are

self-contained requiring only external power and cabin cooling air.

Each instrument is 10.28 inches high, 11.5 inches wide and 22 inches

long, weighing 58 pounds.

The Space Shuttle HAINS is a modified version of the USAF B-1B

instrument. The HAINS contains an internal dedicated microprocessor

with memory for processing and storing hardware compensation and

scale factor data from the vendor's calibration. Therefore, the need to

initial-load (l-load) over sixty parameters into the GPCs Mass Memory

Unit (MMU) prior to a flight is reduced. The CPU software is called the

Operational Flight Program (OFP). It includes Built-In-Test-Equipment

(BITE) logic for the hardware and processed data. Navigational data

are developed from self-contained inertial sensors consisting of a

vertical accelerometer, two horizontal accelerometers, and two, 2-axis

displacement GYROFLEX gyroscopes. The sensing elements are

mounted in a four-gimbal, gyro stabilized inertial platform with the

accelerometers (which are maintained in a known reference frame by
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the gyroscopes) as the primary source of information. Attitude and
heading information is obtained from resolver devices mounted
between the platform gimbals. The HAINS is 9.24 inches high, 8.49
inches wide, and 22 inches long, weighing 43.5 pounds.

An inertial navigation system (INS) has: A) sensors that detect
instananeous vehicle linear acceleration along three orthogonal axes,
and B) derives vehicle linear velocity and position and vehicle attitude
and heading. The combination of these two features makes a self-
contained system. With respect to the space shuttle, feature A is
presently performed by the KT-70 IMU while feature B is performed
by the GPCs.

Differences between the KT-70 IMU and HAINS

There are a variety of differences between these two pieces of
hardware.

HAINS is smaller and lighter than the KT-70 IMU. HAINS has the
capability to be internally torqued by its own microcomputer while
the KT-70 IMU is externally torqued by commands from a GPC. The
HAINS has one resolver for each axis while the KT-70 IMU has two
resolvers per axis. The HAINS gyro error parameters are monitored by
the self-contained CPU and transmitted to the GPCs through the MUX
card and multiplexer. On the KT-70 IMU, these parameters are stored
in and monitored by a GPC. The HAINS takes a longer amount of time
than the KT-70 IMU to spin-up and spin-down due to braking circuit
design. A Stat value of 3F, on the Ground IMU Control/Monitor display,
indicates the IMUs are completely spun up. See Firgure 1. The HAINS
gyroscopes contain a gold plate that reduces gyro drift rate trending.
Trending is the long term change in a parameter. The HAINS
accelerometers allow for a tighter deadband. Not all of the HAINS
capabilities are used in the Space Shuttle version because of the need
to maintain transparency with the KT-70 IMU.

Initial-loads (I-loads) are predetermined values for various
parameters (e.g., gyro errors), l-loads for the HAINS or KT-70 IMU
vary from Orbiter Vehicle to Orbiter Vehicle.

Test Descriptions

Four test sequences, each consisting of five test cases, were
conducted for approximately one week over the four month period of
May, June, July, and August, 1990. The approach for the first three of
the test sequences consisted of integrating one HAINS at a time into
the GTS in combination with the KT-70 IMU, until a full complement of
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three HAINS formed the test configuration for the third sequence. Test

sequence 4 consisted of five special cases. See Table 1A and B. The

GPCs were loaded with OI-8F flight software with both nominal and

off-nominal (5-sigma) I-loads for the HAINS. For the KT-70 IMUs, the
l-loads were determined at the ISL.

The IMU Redundancy Management (RM) routines were tested by

inserting a delta bias into a HAINS during an IMU dilemma condition

and observing the deselection of the appropriate IMU by RM.

May 1990 Testing Session

A) One HAINS (Slot 1) and Two KT-70 IMUs

B) All three instruments were controlled from the cockpit.

Because there was no Launch Data Bus, the Launch Processing

System (LPS) only monitored downlisted data from the GPCs.

The LPS is a duplicate of the actual ground station equipment

used at the Kennedy Space Center (KSC) from T-2.5 hours

through countdown and liftoff.

June 1990 Testing Session

A) Two HAINS and 1 KT-70 IMU (Slot 3)

B) All three instruments were controlled from the cockpit except

one test they were controlled from the LPS. Downlisted data
from the GPC was monitored at the LPS.

July 1990 Testing Session

A) Three HAINS

B) All three instruments were controlled from the LPS through the

Launch Data Bus (LDB). Downlisted data from the GPCs was

monitored at the LPS. Raw redundant gyro data is what comes

out of the IMU and contains noise. Compensated redundant

gyro data is filtered (second ordered) by the GPC.

May, June and July Test Sessions

A) Test Case 1 : Orbiter Vehicle (OV) in horizontal position to

simulate change out of units in the KSCs Orbiter Processing

Facility (OPF)

B) Test Case 2 - 5 : OV in vertical position to simulate

on-the-pad environment

August 1990 Testing Session

A) Two HAINS and 1 KT-70 IMU (Slot 1)

B) All three instruments were controlled from the LPS.

C) All five tests performed in the vertical position
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Hanger Calibration A (HCA)
Each IMU is moved through 25 predefined cluster orientations.
Using the measured acceleration and drift as measured by the
accelerometers at each position, accelerometer biases, scale
factors, symmetry, and misalignments as well as gyro bias scale
factors, sensitivities, mass unbalances, drift and misalignments
are calibrated. All three IMUs are commanded simultaneously in
the operate mode. Item 20 on Spec 104 , the Ground IMU
Control/Monitor Spec, is used to request initiation of this
procedure that takes approximately six hours. See Figure 1. Item
28 on Operational Sequence (OPS) display 9011 (GPC Memory)
indicates the position number (0001 - 0013) of the IMU cluster
calibration being performed at that time. See Figure 2. During the
hanger calibration, one of two sets of transformation matrices,
describing desired platform orientations relative to the
navigation base, is loaded into the GPC. Two distinct sets are
available as a contingency provision to allow for alternate launch
parameters.

Preflight Calibration A (PFCA)
Each IMU is sequenced through 13 platform or cluster positions,
two times: the accelerometers are set in high gain for the first
pass, and, in low gain in the second pass. All gyro calibration

data and the high gain accelerometer calibration data are collect-

ed in the first pass. The second pass is to collect data for the low

gain accelerometer calibration. A tWO minute delay is required

for the accelerometers to stabilize following each gain change.

A subset of the accelerometer and gyro compensation parameters

are updated. This procedure will calibrate all selected IMUs in the

operate mode and takes approximately two hours. The launch pad

preflight calibration is started no earlier than 15 hours prior to

launch. The calibrated parameters are valid for 17 hours, thus

providing at least two hours of on-orbit use before degradation.

The IMUs will remain in the operate mode from the beginning of

this calibration through launch.

Compensation Criteria (C-Crit)

The compensation criteria provides a basis for accepting or rejec-

ting the results for an IMU calibration. It is used at the Kennedy

Space Center to evaluate unit health. For example, the

compensation criteria for the KT-70 IMU is 0.035 degrees per hour

of drift while for the HAINS it is 0.006 degrees per hour.
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Platform Positioning

The IMU gimbals are reoriented and then fixed (or caged) in

place. The IMU-caged orientation is defined as the point at which

all resolver outputs are zero. Physically, this causes the IMU

platform to lie parallel to the nav basel Thus, the nav base and

platform coordinate axes are parallel. This procedure takes

approximately two minutes.

F

Attitude Determination

Resolver (attitude) and velocity data is used to determine the

orientation of the navigation base to the North-West-Up (launch

pad) coordinate frame for each operating IMU. A gyrocompassing

technique is used to determine the position of north, west, and up

relative to cluster position. This procedure, in conjunction with the

gimbal angles, is used to define the navigation base to NWU

transformation. The transformation is a prerequisite for running

all subsequent options involving alignment and calibration. This

procedure takes approximately four minutes. It is required

whenever the Orbiter has been moved on the ground or the trans-

formation data may have been destroyed in the GPC memory.

Preflight Platform Alignment

A preflight platform alignment, consisting of a gyrocompass align-

ment and velocity/tilt initialization, is performed for each IMU

after the preflight calibration is completed. The purpose of this

alignment is to position the platforms to the desired orientation for

launch, to maintain this orientation until T-20 minutes (OPS 1

transition), and to provide platform orientation data to the GPCs.

The gyrocompass phase of the preflight alignment positions the

IMU platforms relative to the navigation base reference systems.

The desired orientation loaded into the GPC during hanger calibra-

tion is used for this alignment. Since the navigation base orienta-

tion relative to the launch pad is known, this alignment actually

positions the IMU platforms to a desired orientation relative to the

NWU coordinate frame whose origin is at the launch pad.

Velocity/tilt initialization estimates the tilts and drifts experienced

by the IMU's due to the Earth's rotation and gravity effects while

awaiting the OPS 1 transition. Preflight platform alignment takes

approximately 48 minutes.

Gyrocompass Alignment (GCA)

The platforms are moved to skewed launch orientations defined
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with respect to the navigation base. The platform skewing is
primarily for redundancy management purposes and also prevents
more than one IMU experiencing gimbal flip at the same time.
During this phase, the IMUs are placed in two orientations relative
to the NWU coordinate system. These two orientations differ only
in a 90 degree rotation about the up axis. Data is collected for 90
seconds by the accelerometers to remove any misalinement due to
the reorientation. The accelerometers are used here because their
accuracy is much better than the resolvers and the acceleration due
to Earth rotation is definitely known. Therefore, any unexpected
acceleration is due to IMU misalinement. Once this misalignment is
nulled, the platform is torqued about the north axis to compensate
for the Earth's rotation. Data is then collected for ten minutes to
measure platform drifts. This sequence of data collecting is repeat-
ed at the second orientation. Also the relative attitude errors for

each IMU pair are computed using resolver data. This is then
repeated using accelerometer data. These two values are subtract-
ed and transformed into body coordinates. A factory-calibrated
relative resolver error term is then subtracted. At the end of the
GCA, a relative gyrocompassing goodness test is performed on each
IMU pair (1:2, 1:3, and 2:3). Failure to pass the goodness test will
be indicated on the Ground IMU Control/Monitor display (FAIL will
appear under GYROCOMP). Success of the goodness test is depicted
on this display when the Hardware Bit Indicator changes from
8010 to 8000 thus signaling the switch of the Capacitive Reset
Integrator (CAPRI) Scale Factor Gain Setting from high to low. See
Figure 1. GC Fail = 0000, on GNA TOC display GC Align, also verifies
a successful GCA. This procedure takes approximately 38
minutes. At the end of GCA, the software will automatically
advance to Velocity/Tilt.

Velocity Tilt
The platforms are torqued at Earth's rotational rate, keeping the
skewed launch orientations (set up by GCA) constant with respect
to the navigation base. This establishes the drift experienced while
waiting for the OPS 1 transition and amounts to less than 200
arcseconds per axis between IMUs. These drifts measured by the
accelerometers are used to develop a compensation which is
applied to the gyros from the OPS 1 transition to T- 12 seconds.
They are also used to compute the current platform to M50
reference stable member matrix (REFSMMAT) at the OPS 1
transition. This procedure takes approximately ten minutes, at

which point, CPLT appears under GYROCOMP on the Ground IMU
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Control/Monitor display. VT Fail = 0000 indicates a successful

completion of Velocity Tilt. At the same time, the software

will begin performing a level axis tilt test on each platform

three times per second.

Inertial Reference Alignment Monitoring System (IRAMS)

The IRAMS was designed to monitor IMU health, measure mis-

alignments, predict launch hold time, and correct misalignments

(if necessary) to avert a scrubed mission. IRAMS determines IMU

platform misalignment while holding on the launch pad. The

IRAMS computes and displays values of gyro drift compensation

needed to correct the misalignment over a specified period of

time. IRAMS will monitor to determine if the misalignment was

corrected. See Figure 3.

Inertial

This submode is requested by the crew using a keyboard item

entry. It provides users with attitude and velocity data for flight

computations. It also provides IMU torqueing to compensate for

gyro drift. At the OPS 1 transition, the IMUs enter the "tuned

inertial" drift compensation mode. It is "tuned" because a compen-

sation factor, computed in the velocity tilt, is applied to the IMU

gyro torqueing signals to account for the estimated drift, keeping

the platforms aligned to the M50 coordinate system. The total

accumulated IMU velocity data is compensated for

accelerometer errors in order to support the navigation and

redundancy management functions. The gimbal angles are

compensated and made available to navigation and user interfaces.

At T-12 seconds, this compensation is removed and the IMUs

enter "free inertial" mode. The IMUs are now flight ready.

If a technical hold is imposed (launch delay encountered) between

gyrocompass alignment and T-20 minutes, the inertial orientation

of the IMU platforms computed from velocity tilt will differ from

the current REFSMMAT expected for a nominal on-time launch.

Since many ground systems supporting the Orbiter's GN&C func-

tions use the current REFSMMAT, it is imperative that these

ground systems incorporate the REFSMMAT computed by the

Orbiter's Onboard Primary Flight Software at T-20 minutes. These

REFSMMAT will be made available to the ground through

telemetry (TLM) downlink.

If a technical hold is imposed after transition to OPS-1, the

computed current REFSMMAT remains unchanged; however, vel-

tilt drift compensation may be degraded with a resultant differ-
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ence between the actual platform positions and the positions

described by the current REFSMMATs. This status can be

monitored from the ground and if limits are reached, the count

must regress to some time prior to GCA in order to realign the IMU

platforms.

Redundant Gyro Monitor (RGM)

For simulated on-orbit operation, a redundant gyro monitor test

was performed for a roll, yaw, and pitch axis on the Dynamic

Motion Simulator (DMS). This table and associated controls

allowed for an all-attitude, unlimited rotation of the HAINS and

KT-70 IMU in three orthogonal axes. By programming the slope

of the frequency sweep, the angular acceleration and the time

span of constant rate were accurately controlled. The DMS was

tilted to a 45 degree angle from the reference position (launch

orientation) in each axis. Starting from the horizontal position,

the table was ramped to a rate of 13 degrees/second. It returned

to zero degrees/second by the time the table reached a 45 degree

incline. This procedure provided a means to calculate the

staleness of the resolver angle data. It also checked the IMU's

stability and performance under normal on-orbit maneuvering

conditions. The table was ramped through a zero to thirty to zero

degree/second cycle during testing in August. An IMU platform

is capable of remaining inertial for vehicle rotations of up to 35

degrees/second and angular accelerations of 35 degrees per

second squared.

Redundancy Management (RM)

The IMU RM scheme consists of a selection filter (SF) and fault

detection, identification, and reconfiguration (FDIR) software.
The SF selects the best data from the available IMUs. FDIR

searches for faulty data, attempts to identify the IMU produc-

ing the data, and if successful, reconfigures the SF to exclude

data from the faulty IMU.

The RM software is divided into two distinct areas, attitude RM

and velocity RM. The purpose of the attitude SF is to choose one

IMU as the attitude source for the GN&C software. The purpose of

the velocity SF is to choose the best available data from the IMUs

for use in propagating the Orbiter's state vector. Depending on the

number of available IMUs, the SF uses different schemes to

determine which IMU to use. Mid-select and averaging techniques

are used in the data selection process.
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On-Orbit IMU-to-IMU Alignment
When at least one IMU is already in alignment, this option is
available to reposition any IMU(s) back to the desired cluster
orientation with respect to inertial space. The aligned IMU is
used as reference. Because the platforms are both slew and
torqued, this type of alignment is fast and should be used when
large misalignment angles are present, iMU'to-IMU alignments

do not use star tracker or Crew Optical Alignment System data.

Results, Analysis, and Interpretation

Spin-up and spin-down time for the HAINS took 90 seconds while
the KT-70 IMU took 37 seconds. The 53 second difference is due to the
HAINS braking circuit design.

A total of ten Hanger Calibration A's were performed with excellent
results. Three tests had the IMUs oriented horizontally to simulate the
change out of units in the KSCs OPF. The other seven calibrations had
the IMUs vertically oriented to simulate an on-the-pad environment.
Three of these tests were initialized with 5-sigma off'nominal I-loads
while the other four tests had nominal I-loads. Sample results are
presented in Table 2. HCAs successfully calibrated the HAINS off-
nominal 5-sigma I-loads.

A total of 16 PFCAs were performed with the IMUs in the vertical
orientation with excellent results. The initial conditions for these
PFCAs consisted of either nominal I-loads or previous SAIL
calibrations via a Mass Memory read. Sample results are presented in
Table 3.

A total of 38 preflight alignments were performed successfully. An
example of HAINS GC results are presented in Table 4. Accelerometer
and gyro performance was good. The requirement for the gyro re-
straint drift terms is 0.018 deg/hr over a year (3-sigma).

The Tuned Inertial/Extended Launch Hold tests perhaps best
depicted the significant improvement of performance realized in the
HAINS design. Holds of up to three hours in tuned inertial were
successful. The IRAMS monitored platform drift and consistly
predicted launch hold capability in excess of the four hour
specification requirement.

Two series of OPS Trans were performed successfully. During
simulated powered ascent (OPS 1, Liftoff through Orbit Circularization
Maneuver Coast) and using the PASS, less torque commands were
issued to the HAINS than KT-70 IMU. This decrease can be attributed
to the HAINS gyro error parameters being internally compensated.
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During each of three runs, one IMU was deselected and a large

delta gyro bias was patched via a keyboard input to one of the

remaining selected IMUs, in each case a HAINS. This tested the ability

of PASS RM to properly fail a badly drifting HAINS in a RM attitude

dilemma scenerio. With a delta bias of 4 deg/hour to the y-gyro (DFY)

of IMU-3, RM correctly failed IMU-3. With a delta bias of 4 deg/hr

input to the x-gyro (DFX) of IMU-2 resulted in the correct fail of IMU-

2. With a delta bias of 4 deg/hr input to the z-gyro (DFZ) of IMU-3

resulted in the unexpected fail of IMU-2 instead of IMU-3 as intended.

This result disclosed a shortcoming on the part of RM to detect a

failure solely in the z-gyro axis. ARM dilemma occurred in about two

minutes. For all three runs, the bias was removed followed by a

successful IMU-to-IMU alignment and IMU reselection in MM201.

The time required for realignment depends on how far the IMU was

out, The maximum torque rate is 100 degrees/hour.

The RGM results show no consistent pattern in the data during the

indicated disturbances to the DMS. The test attempted to detect

disturbances to the redundant gyro when the DMS was rotated

sequencially about each of its axes by a high step input command.

Large rate step inputs to the DMS were not obviously discernible in

the RGM output of either the HAINS or the KT-70 IMU, but the test did

show that the HAINS RGM output was compatible with the KT-70 RGM

output. It suggests that this parameter may be unreliable when used

as a means of deselecting a drifting IMU during an attitude

miscompare in the RM dilemma case.

A run with artifically introduced errors to drive the clusters off

tested the IRAMS Uplink capability. This was accomplished with a

patch to insert errors prior to the start of the Prelaunch sequence. The

errors were as follows: IMU1 DIXE = 0.107 deg/hr, IMU2 DSXE = 0.207

deg/hr and IMU3 DSXE = 0.217 deg/hr. The test had two uplinks, the

first being the IRAMS correction drift values and the second being the

restoration of the initial I-load drift compensations. The performance

was good and the uplink capability was adequately demonstrated. The
maximum tilt error was 107 arcseconds in S/N 201 North tilt which

was mostly due to the introduced drift errors. See Table 4.

There was a delay from the time the IRAMS correction values were

determined and when they were actually applied. This accounted for

the corrections of the misalignments not actually attaining zero.

Summary and Conclusions

This paper presented the description and explanation of

comparison testing, as performed in the SAIL, between the HAINS and
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the KT-70 IMU. The instruments were evaluated during various

operational sequences and major modes of a space shuttle mission.

The HAINS performance in the SAIL demonstrated transparency of

operation with respect to the KT-70 IMU. The concept of an internally

compensated inertial navigation system is compatible with the Orbiter

avionics system and flight software. The HAINS displayed a high level

of performance accuracy previously unseen with the KT-70 IMU. The

results obtained from the SAIL tests were generally well beyond the

requirements of the procurement specificiation.

The HAINS will provide spares support, eventually phasing out the

KT-70 IMUs. Flight rated HAINS will be swapped out with any KT-70

IMU that has failed in the three active Orbiters. The Endeavor,

presently under construction in California, is being fitted with three

HAINS. A full contingency (5) of IBM AP101S GPCs with O1-8 D/F PASS

will fly on STS-42 in December,1991. But no firm date has been

established when an Orbiter will fly with 3 HAINS and 5 new GPCs.
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Figure 1.-The GND IMU CNTL/MON display.
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Table 1A.- Test Case Description for Test Sequences 1,2, & 3

Volume Test Case Description*

1 KSC-OPF (Horiz); Nominal I-loads, HCA, PFCA, 3 GCAs

2

3

KSC-PAD (Vert); Nominal I-loads, HCA, PFCA, 3 GCAs

KSC-PAD (',,err); Nominal i-loads, PFCA, GCA, G9 Inertial,

GCA, OPS Trans to MM 101,3 Hr Hold (IRAMS), OPS Trans

to MM201, Delta Gyro Bias RM test, IMU-to-IMU Align

KSC-PAD (Vert); Off-nominal (5-sigma) HAINS I-loads, HCA,

PFCA, GCA

KSC-PAD (Vert); Nominal I-loads, PFCA, GCA, OPS Trans

to MM101, 2 Hr Hold (IRAMS), OPS Trans to MM201, DMS

Step Inputs/RGM Noise test

*Note: OPF

HCA

PFCA

- Orbiter Processing Facility GCA -

- Hangar Calibration A OPS -

- Preflight CalibrationA MM101 -

Gyrocompass Alignment

Operational Sequence

Major Mode 101

STRACHAN'001

314



Table lB.- Test Case Volumes for Sequence 4

Volume Test Case Description

1

2

3

4

5

KSC-PAD (Vert); Generic I-loads, HCA, MM Write, PFCA, GCA, OPS Trans

to MM101, 2 Hr Hold (IRAMS)

KSC-PAD (Vert); MM Read, PFCA, GCA, OPS to MM101, 2 Hr Hold (IRAMS),

OPS to Gg, GCA, OPS to MM 1_._13 Hr Hold (IRAMS), OPS to MM201, DES

IMU-1, Input Delta DFZ to IMU-2, RM dilemma test

KSC-PAD (Vert); MM Read, PFCA, GCA, G9 Inertial, 1 Hr Hold, GCA, OPS

to MM 101, 3 Hr Hold, Des IMU-I, Input Delta KOX to IMU-2, Accel. RM
test

KSC-PAD (Vert); MM Read, PFCA, GCA, OPSto MM101, 2 Hr Hold (IRAMS),

OPS to G9, GCA, OPS to MM304, GPC-2 to Stby, Restring IMU-2 to

GPC-4, IMU-2 to IMU-3 Align*

KSC-PAD (Vert); Nominal I-loads, PFCA, GCA, BFS oneshot, OPS to

MM 101,2 Hr Hold (IRAMS), Uplink IRAMS Gyro Bias, Ops to G9, Insert

Misalign Patch, GCA, OPS MM101, 2 Hr Hold, Uplink IRAMS Gyro Bias

4 • KSC-PAD (Vert); MM Read, GCA, OPS to MM303, GPC-2 to Stby, Restring

IMU-2 to GPC-4, IMU-2, to IMU-3 Align.

*Note: An abbreviated repeat of Vol. 4 was run due to procedural errors resulting in

an unsuccessful IMU-to-IMU align. The repeated test was successful.

STRACHAN'002
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........... IRAMS PRELAUNCH ALIGNMENT PERFORMANCE ANALYSIS SUMMARY ..........

MODE: INERTIAL

PAPAS TIME 229:0:50:59

FLTSYSTEM 230: 0:50:9

ALIGN START 229:23:38:7

OPR: NWU ALIGNMENT MONITORING

ALIGN ELAPSE 1:12:2 SEQUENCE 10

OPS-1 ELAPSE 0:17:45 SEQUENCE TIME 145
OPS-1 TIME 230:0:32:23 OP5-1 COUNTS 1046

......................... ALIGNMENT HOLD PREDICTIONS .........

REMAINING HOLD TIME 1:32:53 IMPACTING IMU

LAUNCH BY GMT 230: 2:35:17 IMPACTING REDLINE

1

A

....... ALIGN ERROR (ARCS) --_-- -
I

IMU 1 2 3

N -142. -24. -57.

W -19. 61. 2.

U 28. 21. 54.

N -141. -137. 3.

W -46. -1. 12.

U 47. 27. 19.

Ii T-ERROR

IMU

V-TI LT MARC

V-DROP OUT

COUNTER

D-V ERROR.

COUNTER

UPLINK LIMIT

--- PAD/VEH/GC BIAS (ARCS) --{---- ACCEL ERROR (uG)
I

l -15. -13.U -19. -1. 66. i
i

tMU HEALTH MONITOR

COUNT FAILS

2 3 IMU

V-TILT

ALIGN TEST

REDLINE

HOLD TIME

ACCEL

GRYO DRIFT

.... _-- D-ACCEL ERROR (uG/H) --

-11. -7. -3. -19.

OPS-1 TIME

1 2 3

............. FILTERED ALIGN ERROR(ARCS) ...................... DRIFT(D/H) ......

N -120. -129. 11. 6. 24. 19. N-0.0126 0.0074 0.0016

W -44. 34. 26. 2. 2. -6. W0.0032 0.0033 -0.0072

U 36. 44. 10. -36. -44. -10. U-0.0294 -0.0242 -0.0140

.... DRIFT CORRECTIONS(D/H)

X -0.479 0.006 0.014

Y -0.843 0.222 0.317

Z 0.987 -0.533 0.110

"T-- ALIGN ERROR(ARCS) .... r---UNTUNED DRIFT(D/H) ---
I

,A 6. 24. 19. X-0.0114 -0.0089 -1.0135
I

,B 6. 24. 19. Y-0.0385 0.0183 0.0123
I

,C -35. -43. -I2. Z-O.O004 -0.0266 0.0007
!
i

STRACHAN'00$

Figure 3
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HAINS/IMU

Gyrocompass
Tilts:

North

West

Drifts:

North

West

Reslv/Acc:

North

West

PHIT-Up:

Vel - Tilt

Tilts:

North

West

Drifts:

North

West

Reslv/Acc:
North

West

PHIT-Up:
PAD BIAS:

Tuned Inert

Init. Cond.

Tilts:

North

West

Drifts:

North

West

Reslv/Acc:
North

West

PHIT-Up:
Final Cond.

Tilts:

North

West

Drifts:

North

West

Reslv/Acc:

North
West

PHIT-Up:

Table _ Prelaunch Sequence Comparisons - Week 4

DAY 6 RUN 1 (08/20/90)

18

8.1

5.4

-0.0047

0.0030

-47.6

-18.1
-13.3

-0.0034

-0.0068

201

0.0122

0.0025

-9.8

132.1

24.9

0.0122

0.0018

-0.0024

-0.0072

7.3

-5.1

39.2

-0.0027

0.0163

-48.3

-37.1

16.1

-20.1

0.0069

0.0031

-34.5

95.1

2.6

11.7

16.9

48.7

39.9
4.7

65.3

-0.5

0.0015

-0. 0009

0.0003

0.0004

-29.3

-29.4

-2.8

13.3

27.7

-0.0079

0.0136

14.4

-54.6

-22.0

-24.0

45.6

5.2

-0. 0034

0. 0067

-31.2

35.8

14.8

-0.

0.

63.4

53.3

-4.3

35.6

24.2

0010
0030

51.9

56.3

10.2

DAY 6 RUN 2 (08/20/90)

18

10.7

31.2

-0.0012

0.0396

" -63.2

-11.4

23.1

0.0006

-0.0420

-57.1

-15.3

66.9

-9.0

0.0066

0.0143

-43.4

-22.0

62.9

-0.0031

0.0559

2.6

-47.6

102.3

201

0.0302

0.0737

-88.6

-7.5

36.9

0.0314

-0.0746

-104.9

-9.7

1.6

17.5

19.3

0.7

O.OO3O

-0.0016

-101.3

-93.0

5.2

0.0772
0.0106

-112.1

-115.9

-36.9

202

0.1784

-0.0779

-4.2

-50.4

-2.4

133.1
60.8

0.1773

0. 0703

122.2

-23.1

7.0

67.7

-0.00!7

0.0002

46.9

11.5

-3.3

-0.0634

0.0027

33.8

26.1

40.8
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Effectiveness Of Large Booms As Nutation Dampers

For Spin Stabilized Spacecraft

F. O. Eke"

Department of Mechanical,

Aeronautical and Materials Engineering

University of California

Davis, CA 95616

This paper discusses the issue of using long slender booms as

pendulous nutation damping device on spinning spacecraft.
Motivation for this work comes from experience with the

Galileo spacecraft, whose magnetometer boom also serves as

passive nutation damper for the spacecraft. Performance

analysis of a spacecraft system equipped with such a device

indicates that the nutation time constant of such systems are

relatively insensitive to changes in the damping constant of

the device. However, the size and arrangement of such a

damper raises important questions concerning spacecraft

stability in general.

Most spin stabilized spacecraft are equipped with

passive nutation damping devices that limit spacecraft

nutation through on-board energy dissipation. The design of

these devices is based on well established stability criteria

for spinning bodies. I-4 When disturbed slightly from its

position of stable spin, a spacecraft with internal energy

dissipation will recover faster than one without energy

Q

Assistant Professor

321



dissipation. This has led to the design of several passive

devices that are triggered into dissipating energy on board

of a spacecraft anytime that the spacecraft attitude motion

is disturbed. Such devices have included simple mass-spring-

dashpot systems, damped compound pendulum, viscous fluid in

ring-shaped tubes, etc... The Galileo spacecraft features a

passive nutation damper that differs markedly from any that

has been flown to date. As shown in Fig.l, this dual-spin

spacecraft consists essentially of a rotor, carrying a high

gain antenna and three long booms, and a stator section that

houses a probe and carries the scan platform containing most

of the imaging instruments. The rotor is connected to the

stator through a spin bearing assembly that allows one degree

of freedom of relative motion that is controlled by the

"clock" control loop. The ratio of the rotor spin inertia to

the vehicle transverse inertia is greater than one(l.4), so

that the spacecraft spin axis is also its axis of maximum

inertia. The spacecraft's longest boom - its

science/magnetometer boom - is also utilized as a passive

nutation damper by connecting it to the rotor bus through a

one degree of freedom hinge and a torsional spring and damper

system, as shown schematically in Fig.2. Although this

damper is of the pendulous type, its length (8.6m) far

exceeds that of any such damper used in past missions.

Furthermore, the mass center of the boom is outboard of its

pivot point. This, again, is unusual for pendulum dampers.

In the remaining part of this paper, the effectiveness

of this deslgh is explored and compared with that of

traditional dampers. This is done essentially by examining

the shape of the damper time constant versus damping constant

curve as well as by studying the overall attitude dynamics of

the spacecraft in the presence of such a large boom.
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_OUATIONS OF ATTITUDE MOTION

To derive the dynamical equations of attitude motion of

the spacecraft, the model shown in Fig.3 is used. The dual-

spin nature of the spacecraft is ignored, and the system is

assumed to be made up of a main rigid body A and a boom B. A*

and B* are mass centers of A and B respectively, and S* is

the mass center of the combined system. The following

simplifications are also made:

• S* lies on the spin axis Z of the spacecraft and

remains fixed in body A at all times;

• A*, B* and S* all lie on a plane Containing the Z

axis;

• when _ = 0, the central principal axes of the

system for S* are parallel to al,a2, and a3;

• bl,b2, b 3 are parallel to central principal axes of

B for B*, and, for body B, I 1 = I3, while 12 = 0,

where I indicates moment of inertia.

The equations of attitude motion of this system, as derived

using AUTOLEV 6,7, are:

{[(LBsinfl + zo)2+ (LBcosfl + yo)2]mt_ + (y] + z])ma + (I_ + l/_)}t_l +

{[(L.sinfl + zo)LBsinfl + (Ll_cosfl + yo)Ll_cosfl]mB + l")'t4 -

{[(ttl + tt4)Losinfl + zottl]Ul +

(Lnu:infl- Lou3cosfl + zolt2-YOtO)ll2 + (tt l + un)Losinflu4} (Locosfl + yo)m_ +

{-[(u, + u,)Lt_cosfl + you,]u, + [Ll_(u2sinfl- u3cosfl) + zou2- you,]u3-

(ul + ua)Lscosflun}(Lnsinfl + zo)mn - {[(zau2 - yzu3)u3 - yau_Jza +

[(zzu2- yau3)U2 + zau21]Ya}ma + (u2cosfl + u3sinfl)(u3cosfl-u2sinfl)l B-

+ + {I2a3,,2+ = o

(U
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[(Lasinfl + zo)2ma + (1a + ll;sin2fl) + ,nAz2],_2-

[(Lacosfl + yo)(LBsi,,fl + zo)ma + lasinflcosfl-l_3 + mAYAZA ]ti3 +

{[(Ul + ltn)Lacosfl + yOUl]U2 + [(Ul + un)LBsin[3 + zoulJu3 +

(u2cost_ + It3sint_ )Lau4}(Lasinfl + zo)ma + {[(Ul + u4)u3- ulu3]sinfl +

[(ut + u4)u2- ulu2 ]cospJlasin_ + (u2cosp + u3sin[J)(ul + u4)Iasinp-

(IA3ll2 + IAtt3)ltl + (YAttllt2 + zattllt3)mAZA + lAtlltt3 = 0

[(LBcosfl + ),o)(Lnsinfl + zo)ma + Iasinflcosfl-IA3 + mAYAZA ] 1"12--

{[(ul + un)Lacosfl + you,]u2 + [(u, + u4)Ltlsinfl + zoul]u3 -

Lt_cosflu2u4 + Lt_sinflu3u,1 ] (Lt_cosfl + Yo)ma + {[(ul + u4)u3 -ulu3]cosflsinfl +

[(/tl + tt4)tt2- ltltt2 lcos2[3}l a + (uzcos_ + tt3sitlfJ)(tt I + lta)IBcosfl-

(IA3u3 + 12Au2)Ul + (YAUlU2 + ZAUlU3)mAYA + IAlulU2 = 0

{[(Lasin_ + zo)L_sin_ + (Lacos[3 + yo)Lacos[3 ]ran + Ia}t'q + (I n + maL2)t't4 -

{[((Ul + u4)Lasinfl + ZOUl)Ul + (Losinflu2-LBcoSfllt3 + zOu2- you3)u2 +

(ul + un)Lasinflu4lLacos_- [((u, + un)Lacosfl + you,)tq -

(-Lau3cos_ + Ll_u2sinfl + Zoll 2 -- YOU3)U3 +

(Ut + u,OLl_COS_U,l]Lnsin_lma + (u2cosO + u3sinfl)(u3cosO- u2sint3)l _ +

k[3+ = 0

where ui(l = 1,2,3)are the components of the angular

velocity of A along a i, u4= _, m represents mass, I

represents moment of inertia, k is spring stiffness, _ is

damping constant, and the dimensions y0, z0,YA, ZA, LB are as

shown in Fig.3.

(2)

(3)

(4)

z

E

t
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NUTATION DAMPER TIME CQ_ i4,

the

A known equilibrium point of the system corresponds

pure spin condition. That is the solution

u I = u2 = 0, u3 = _ (const.), u 4 = 0, and _ = 0.

This solution does satisfy Eqs.(l-4) provided that

I_3 = mAZAYA + mnzo(Ln + Yo)

to

a condition that is indeed satisfied by the inertia related

simplifying assumptions given earlier. When the full

nonlinear dynamical equations given as Eqs(l-4) are

linearized about the pure spin solution, the result is a set

of first order differential equations that has the form

where

and A and

B_T=Ax T

X=[H1 ll2 ll4 P]

B are 4 by 4 matrices with the following elements:

All = AI3 = A22 = A23 = A24 = A31 = A41 = A42 = A44 = 0

A12 = _mn(Ln + yo) 2 + mA(Y2A - z2a) + ID-I A + I_]12

A j4 = -[I n + mBLo(LB + Yo) ]122

Z21 = -_IAI - IAmA z2 +mB z2 ]12

A32 = -_I B + mBLB(LB + Yo)]-Q

A33 =-O', A43 = 1

(5)

(6)

(7)

(8)

(9)

(lO)

(11)

(12)

(13)
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A34 = -[mBL_(La + yo).Q 2 + k] (14)

(15)

Bl2 = Bt4 = B21 = B23 = B24 = B32 = B34 = B41 = B42 = B43 = 0 (16)

O13 : [I B + moLI_(LI_ + Y0)]

+ +

B31 = [l B + mBLI_(Lo + Yo)]

/133 = IB + mR L2

(17)

(18)

(19)

(20)

B44 = 1 (21)

The eigenvalues of the matrices A and B are found to have

negative real parts for inertia property values corresponding

to all mission phases of the spacecraft. Hence, the pure

spin solution is a stable solution. The nutation angle time

constant is the negative reciprocal of the eigenvalue

corresponding to u I or u 2.

RESULTS

Fig. 4 shows Galileo's nutation angle time constant

plotted against the damping constant of the passive nutation

damping device on board. The case shown corresponds to a

damper spring stiffness of 335 N.m/rad, and spacecraft

inertia property values near the beginning of the mission.

=

i

Two important facts emerge from this plot. First, there

is an optimum damping constant corresponding to a given

spring stiffness. The most remarkable thing about the curve

shown is the fact that it is so flat; especially near the
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minimum time constant value. This means that there is a wide

range of values of o for which the time constant changes very

little. This result is in great contrast with what obtains

for traditional passive dampers, where such plots are not

flat at all, and "tuning" of the damper is almost always a

necessity if one desires reasonably small time constants.

This relative insensitivity of the time constant to O is

particularly appropriate for interplanetary missions. This

is because the viscosity of damper fluids is generally very

sensitive to temperature, and, therefore, the damping

constant can be expected to vary widely during a long

interplanetary flight that takes a spacecraft through varied

environments. It is thus advantageous to have a damper,

whose performance will not be degraded by the inevitab],_

fluctuations in damper fluid viscosity.

i

CONCLUSION

As exemplified by the design and performance analysis of the

Galileo passive damper system, the use of long booms as

nutation damper for spin stabilized spacecraft introduces a

new and important advantage over traditional damping devices.

It renders the system nutation angle time constant

practically insensitive to the device damping constant,

thereby drastically reducing the need for "tuning" of such

dampers. The main disadvantage of such a large device is

that it becomes an important factor in spacecraft stability.

Furthermore, because of the small relative damper

displacements that are to be expected from this design,

factors such as stiction become important in the evaluation

of the damper's performance, and may impose thresholds on the

amount of nutation that can be damped out.
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FINE GUIDANCE SENSOR FINE LOCK MODE*

L. G. Taft
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3700 San Martin Drive

Baltimore, MD 21218

ABSTRACT

There are two guiding modes of the Hubble Space Telescope used for the acquisition of astronom-

ical data by one of its six scientific instruments. The more precise one is called Fine Lock, Command

and control problems in the on-board electronics has limited Fine Lock to brighter stars, V < 13.0

mag, instead of fulfilling its goal of V = 14.5 mag. Consequently, the less precise guiding mode of

Coarse Track (,-_ 40 milli-arc seconds) has to be used fairly frequently. Indeed, almost half of the

celestial hemisphere has stars too faint to support a Fine Lock guidance mode. Hence, some of the
scientific observations to have been made with the Hubble Space Telescope will be compromised. In

this paper I report on the only realistic or extensive simulations of the Fine Lock guidance mode.

The theoretical analysis underlying the Monte Carlo experiments and the numerical computations

clearly show both that the control electronics are severely under-engineered and how to adjust the

various control parameters to successfully extend Fine Lock guiding performance back to V = 14.0

mag and sometimes beyond.

1. INTRODUCTION

This paper is complementary to Taft (1990a) in which the Coarse Track mode of the Hubble

Space Telescope Fine Guidance S_nsors was analyzed. The motivation for that paper was the desire

to considerably shorten Guide Star acquisition times--thereby significantly enhancing the efficiency

of Hubble Space Telescope operations--without a loss of scientific information. The key issue was a

realistic estimate of the Coarse Track guiding mode pointing stability, methods to improve upon it,

and whether or not this level of pointing stability would compromise the scientific content of some

Hubble Space Telescope observations.
The real Optical Telescope Assembly--because of manufacturing errors, wavefront calibration

analysis errors, and the tilt and decenter of the secondary mirror--is seriously degrading the guiding

performance of the Fine Guidance Sensors. Instead of a 17-20 milll-arc second Coarse Track pointing

precision, we more typically experience a 40 milli-arc second (mas) pointing instability. Instead of Fine

Lock to V = 14.5 mag, operationally successful Fine Lock stops at V = 13.0 mag. The implication

of a thirteenth magnitude Fine Lock limit is, in effect, no Hubble Space Telescope observations, with

Fine Lock, beyond a galactic latitude limit of Ibl = 30 °. This means excluding half of the celestial

hemisphere and most of the extra-galactic part of the sky. Thus, a complete investigation of the Fine

Lock algorithm was undertaken in an attempt to rapidly make the maximum improvements. This

paper summarizes that effort.
The next section of the main text addresses the limiting magnitude issue in more depth. With a

clearer understanding of the importance of the Fine Lock limiting magnitude, I then briefly review

the Fine Guidance Sensor electro-optical system (§3) and the principles of Fine Guidance Sensor

guidance operation (§4). Section 5 summarizes a theoretical analysis of Fine Lock and extensive

* Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space

Telescope Science Institute, which is operated by the Association of Universities for Research in

Astronomy, Inc., under NASA contract NAS5-26555.
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computer simulations of Fine Lock. The latter are based on empirical Fine Guidance Sensor Transfer
Functions.

2. GUIDE STAR PHOTOMETRIC STATISTICS

The operational problem faced during the latter half of 1990 was the unreliability of the Fine

Lock process of the Hubble Space Telescope (HST) Fine Guidance Sensors (FGSs) operating under

the Pointing Control System. _ Without now going into the detail which will be provided in Section
4, the Fine Lock mode is the ultimate in the control of the spacecraft. The successful attainment

and maintenance of this state is crucial for reaching some of the scientific goals of the HST mission

for only with the pointing stability of Fine Lock (--, 7 milli-arc seconds) can some of the instrumental

modes function optimally. This became even more important when the spherical aberration in the

primary mirror degraded the pointing stability of the Coarse Track mode by a factor of two, from
z

-,_ 20 milli-arc seconds to -,- 40 mas. The Guide Star Catalog, a catalog of stars from which guiding

targets for the FGSs are to be chosen, typically reaches V = 14.5 mag for this was the specified limit

of a successfully achieved and maintained Fine Lock state. Unfortunately, the real performance of

the hardware and Perkin-Elmer Corp.'s utilization of it limited a stable Fine Lock state to V < 13.0

mag and Fine Lock was routinely unobtainable beyond V = 13.0 mag. These poor results, the

improvement of which is the main subject of this paper, would have placed severe limitations on the

scientific operational capabilities of the HST.

To understand how a significantly brighter limiting magnitude for Guide Stars affects the scientific

mission of the HST we must understand how the Guide Star Catalog was created. The stellar

density goals were ,-_ 500 stars per square degree, uniformly over the entire celestial sphere, to a

fixed limiting magnitude. Our location in the Milky Way, the spiral nature of the Galaxy, and
the underlying galactic luminosity distribution all conspire to prevent one from attaining this goal.

As the constructors of the Guide Star Catalog moved towards the galactic poles they were forced

to go fainter and fainter to maintain a constant stellar density. Not knowing, in advance, where :-

the General Observers who would use the HST might want to point it, allowance had to be made

for all-sky coverage with a uniform areal density. The apparent magnitude distributions for three

galactic latitudes are shown in Fig. 1 wherein the faintward shift at higher galactic latitudes can be

seen. However, since the Guide Star Catalog is not a complete catalog, the limiting magnitude does

not decrease as rapidly with increasing absolute value of galactic latitude as the true stellar density

decreases. Figure 2 provides an integrated (over galactic latitude) apparent magnitude distribution

for the entire Guide Star Catalog. There is a displacement of ,,_ 0.6 mag between the two celestial

hemispheres because of a color term between the ,_ V sensitivity of the northern hemisphere Schmidt

plates and the ,,_ J sensitivity of the southern hemisphere Schrnidt plates used to construct the Guide

Star Catalog.

To achieve Fine Lock in two of the three FGSs, which is what is necessary for the Pointing

Control System to be satisfied, we require two stars brighter than the limiting magnitude of Fine

Lock guidance. If, instead of being able to avail ourselves of the full V = 14.5 mag limit of the Guide

Star Catalog we are forced to retreat to V = 13.0 mag, then the a priori probability of being able to

achieve Fine Lock--solely because of the lack of suitable Guide Stars--drops to 0.44 of the nominal

level. Moreover, almost all the lost portion of the celestial sphere is beyond 30 ° from the galactic

equator. An increase in the improvement in the Fine Lock guiding process to V = 13.5 mag raises

this probability to 0.60. Thus, the rate at which sky coverage is regained is a slowly varying function

1 The Pointing Control System logic implemented by Lockheed Missiles Corp. discards three-

quarters of the photons acquired by the telescope. This egregious procedure reduces the effective

limiting magnitude by 1.5 mag from the one otherwise attainable. This represents a separate, addi-

tional problem not dealt with herein.
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of the limiting magnitude primarily because the current limiting magnitude is so bright. Finally,

retrieving V = 14.0 mag performance, as I suggest can be routinely done, brings us back to 79% of
the V = 14.5 mag level.

3. THE DESIGN AND FUNCTIONING OF AN FGS

3.1 Optical System

The optical train of a Fine Guidance Sensor (FGS) is displayed in Fig. 3 (see also Taft 1990b).

The Optical Telescope Assembly (OTA) system of the HST is a Ritchey-Chretien Cassegrain design.

Before the prime focus of the OTA is a plane pickoff mirror which deflects light into the FGS. The

FGS total field-of-view is defined by this mirror. Light diverging from the pickoff mirror hits an

off-axis aspherie mirror which nearly collimates the beam. A collimated beam is required for sensing

wavefront tilt at the Koester's prism (see below). The beam then travels to the first "Star Selector"

known as Star Selector A. It rotates about its optical shaft encoder axis; the angle of rotation is

denoted by 0A.

A ray striking Star Selector A, parallel t0its rotation axis, will be (nominally) deviated by 406.2

arc minutes. Star Selector A acts in concert with a second star selector, B (whose rotation angle

is 0B). It too accomplishes a (nominal) 6.77 degree deviation. Together they move the 5 II x 5"
instantaneous field-of-view of an FGS about its total field-of-view.

In between the two star selectors is a five element corrector group; this corrector group is placed

just before the first pupil and its function is to provide better collimation. Also, this refractive group

corrects for field curvature and astigmatism (which are characteristics of the Ritchey-Chretien design

of the OTA). In addition, it corrects for design spherical aberration, coma, and the small amounts

of astigmatism found in the collimating asphere. (The corrector group rotates with Star Selector

A as one mechanical assembly.) The corrector group does not correct for the mis-shapen primary

mirror nor does it correct for improper tilt or decenter of the secondary mirror nor for mechanical
displacements of FGS optical components.

The polarizing beam splitter after the filter wheel divides the light into two equal intensity beams
in mutually orthogonal directions. Each beam is also plane polarized. Two beams--hence two

Koester's prisms are required since a Koester's prism only senses wavefront tilt in one axis. The

light bundle is next incident onto the face of a Koester's prism. Within the prism it is divided by a

dielectric beam splitter which performs a wavefront division of the incident ray. These two channels

are denoted by A and B. The dielectric coating retards the transmitted beam by a quarter of a

wavelength while the reflected light is unaffected.

Located beyond the Koester's prism is a set of duplex reimaging optics, one for the A and one

for the B channels. The first part of each unit, the doublet, images the star onto the field stop. The

lens/field stop assembly is located in the back focal plane of the doublet. The lens produces the

pupil image on the sensitive surface of the photocathode tube. The 5" by 5" (object space) field stop

provides the boundaries for the FGS instantaneous field-of-view. There is a photomultip]ier tube

for each channel of each Koester's prism, hence, four photomultiplier tubes reside in each FGS. The

response of the photomultiplier tube is similar to that of the S-20 tube.

3.2 The FGS Transfer Function and the Fine Error Signal

3.2.1 The Transfer Function

Before discussing the algorithms contained in the Fine Guidance Electronics (FGE), it is impor-

tant to describe the FGS Transfer Function. Figure 4 shows two situations. In the top picture there

exists zero tiit in the wavefront at the face of the prism. That is, a combination of re-positioning

the spacecraft and the Star Selectors has placed the target Guide Star onto the combined optical

axis. Therefore, each photomultiplier tube for this prism senses the same amount of light. In the

336



uJ

×

o

Z

8

oO

O0_

o._

Figure 3. FGS Optical Train Schematic.

337



lower part of the figure the wavefront has a quarter wave tilt. As the beam exits the left side of the

Koester's prism constructive interference occurs. (The wavefront which is transmitted through the

beam splitter is additionally retarded by A/4.) The right side will experience destructive interference.

Hence, the counts for the left side photomultiplier tube are greater than those in the right side pho-

tomultiplier tube. A graph of the counts versus tilt angle is known as the Transfer Function (TF).
See Fig. 5.

In more mathematical detail, for a monochromatic ray of light with angular frequency w, the

resultant of one component of its electromagnetic field will be of the form

( " ( 4)I cos(wt - ¢) + I cos wt - ¢ + = 2I cos _- cos oat - ¢ +

where ¢ is the initial phase. The resultant intensity is proportional to 2I 2. More generally, with some

angle of incidence of the ray normal with respect to the Koester's prism face of 0 at a distance r out

from the optical axis, the resultant component of the electromagnetic field has the form

The wavelength associated with w is A and _L,R is 4-1 depending on whether the ray passed through
the ]efthand or righthand side face of the Koester's prism. Ignoring the temporal modulation, the

net energy is proportional to

:,I'<o.' +7).
The FGE combines the counts from the A and B channels of the Koesters prism to form the TF (see
Fig. 5). That is,

A-B

S-A+ B (1)

in which A and B are the counts in the A and B channels. In terms of EL,R, A and B are proportional
to

2I 2 cos 2 = EL,Rdr

where R is the radius of the primary mirror. Thus,

S - eL - eR - sin 2 z/z, z = 27rORIA. (2)
eL + eR

This is the Green's function for the FGS optical system and we may build up a theoretical TF by

integrating it over a hypothetical stellar spectrum, angular disc with limb darkening, actual photo-

multiplier responsivity, and so on (see Taft 1991).

3.2.2 Fine Error Signal

Once the FGS is locked onto a star, the Fine Error Signal is used to update the Star Selector

positions so that the wavefront maintains zero tilt at the face of the Koester's prism. This process

maintains the high precision pointing required for HST guiding. As can be seen from Fig. 5, the core

part of the TF is approximately linear from -10 to +10 mas. While the slope of the TF does change

with stellar color index, this does not represent a significant variation.

The Fine Error Signal is defined in the FGE as

Rx - Klx * Sx + Kox, Ry = Kly * Sy + KOy (3)

where Sx and Sy are the FGE TFs for the z and y axes ala Eq. (1). Klx and Kly are the signal gains
for each axis and are dependent upon stellar magnitude and background brightness [see Eq. (10)].
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K0z and KOy are offsets whose initial purpose should be the equalization of the probability of a

successful threshold detection whether one approaches the null of the interferometer from the left or

the right [see Eq. (11)]. Values for these, and other, parameters can be changed via uplink telemetry.

The 'FGE Transfer Function' differs from that in Eq. (1) in two respects. First, to reduce

sensitivity to photon noise, a mean value of A + B is used to normalize S. This average is taken over

the first sixteen samples after the Coarse Track phase has successfully terminated and just before the

commencement of the 'walkdown' (the walkdown is described in §4.3). In addition, the mean, over

these same 16 samples, of A - B is computed, call it AAB , and subtracted from the numerator of S

in Eq. (1), as in Eq. (4) below.. This adjusts for any A vs. B photomultiplier tube bias.

4. FGS GUIDANCE OPERATION

4.1 Search Mode

Search mode is entered into when the spacecraft's main computer issues a Search/Track "On"

command to the Fine Guidance Electronics (FGE). The FGE will generate the appropriate Star
Selector servo commands, at a 40 hertz rate, to move the 5 t! × 5 t! instantaneous field-of-view of

the FGS in an outward spiral (there is nominally a 30% overlap in coverage from one spiral line to

the next). The purpose of Search mode is to search for a specific target (i.e., the Guide Star in

this scenario). Success is based upon the photomultiplier tube count rate exceeding a lower limit
threshold.

4.2 Coarse Track Mode

Once the target Guide Star has been detected in Search mode, the FGE will command the Star

Selectors such that the instantaneous fleld-of-view will circle about the target at a once per second rate.

The nominal nutation circle radius is 2.706 arc seconds; the number of nutations is variable. The FGE
algorithm for Coarse Track updates the position of that center every 25 milliseconds nominally for

12 complete circuits (although only every fourth sample is accepted by the Pointing Control System;

there is no integration). Coarse Track produces an error signal based on the combined photomultiplier

tube counts it senses in each of the four quadrants of the nutation circle (see Taft 1990a for a fuller

explanation). This signal then produces a new estimate for the center of nutation. The objectives

of Coarse Track are to stabilize the still-drifting spacecraft (after a slew) and to determine the star's

position to approximately 20 mas. Then a transition-stage, known as the 'walkdown', is used to reach
the Fine Lock state.

_.3 Fine Lock Mode

The geometry of the approach to Fine Lock mode is shown in Fig. 6. The orthogonal intersection

of the interferometers is commanded to a position K B arc seconds away from the target position (and

midway in between them) which was determined in Coarse Track. Thus, approach can only occur

along a diagonal and there is no provision for anisotropy (e.g., a Kbz and a Kby). The star selector
encoders will be commanded by the FGE to approach the target position in at most K5 steps, with

each step being K D arc seconds in length (no Kdx nor Kdy ). The process of stepping down to the
star colloquially referred to as the 'walkdown.'

The number of walkdown steps may vary up to 765. The nominal walkdown step size was

0.009 arc seconds (it is now 6.5 mas). When the target Guide Star is "detected" in one of the

interferometer axes, the step size for that axis is halved to prevent overshoot. Detection occurs

when the interferometer signal exceeds a predetermined threshold (Kz; no Kzx nor Kzy) for three

consecutive 0.025 second samples (this is colloquially referred to as the 'three-hit algorithm'). Once

a Guide Star is acquired, then the FGE control system will position the Star Selectors such that it

will be simultaneously maintained in the linear region (at or near the null) of the interferometer axes

(Sec. 3.2.2).
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g.4 Discussion

To obtain the Fine Lock state on both axes of the two orthogonal Koester's prisms there are

seven parameters available to us. (There should be at least two sets of seven for minimal flexibility.)

The septuplet consists of/(5 (or KB; K5KD = KB/V_), KD, KZ, Klx and Kly, and K0x and

K0y. After defining these parameters and illustrating the role(s) they play in the Fine Lock process,

I provide a theoretical analysis of maximizing the probability of reaching the Fine Lock state. Note

that being in the Fine Lock state as far as the FGE is concerned refers to a successful passage through

the 'three-hit' algorithm. It does not necessarily say anything regarding the location of the Guide

Star with respect to the optical axis. For instance, on a faint Guide Star we might 'lock' onto noise

with the star still far away from the interferometer null(s). (This has, in fact, happened with the real

FGSs.) Whenever the 'three-hit' algorithm is satisfied, the Fine Lock condition, in the sense that the

relevant flag in the FGE is reset, is established.

Remembering the general discussion of FGS operations (for guidance) given above, after the

Coarse Track state has been maintained for Ky (,-, 12) circuits of the nutation circle the position

of the photocenter has been reliably ascertained and the spacecraft drift stabilized. The FGE then

commands the star selector servos to place the star a certain distance away from the photocenter's

location (i.e., the backoff distance KB) and at an orientation 45 ° with respect to the interferometer

axes. (An orientation of 225 ° is also possible.) Once at this point we commence the 'walkdown'

process towards the photocenter and, if we are successful at passing the 'three-hit' algorithm, an

eventual Fine Lock state. K 5 is the maximum number of steps that can be taken on the _walkdown'.

K 5 must be large enough to ensure that we can pass through both the Transfer Function extrema.

Because of the reduction of the step size once the threshold test has been successfully passed (by

50%, see the K D discussion below), K 5 must be larger than (total distance to the other side of the
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TransferFunction)/(step size/2). (Any bias betweenthe CoarseTrack photocenterposition and the
interferometernull positions shouldhave beenincorporated into the original offset from the Coarse
Track photocenter position, i.e., in K B. Such a systematic difference could arise for a number of
reasons not dealt with herein. These causes need not maintain--and indeed have not maintained--

symmetry with respect to the x and y axes. Therefore, there should have been provision for a K5z

and a K5y as well as a Kbx and Kby.)
You might wonder at the need for a K 5 at all. Given that the Coarse Track/Fine Lock offset

vector has been well-determined (which is not yet the case at the beginning of 1991), we might adjust

the Coarse Track backoff from the interferometer nulls to be between the two maxima (or minima for

the other polarity) of the TF. This is the place marked SSE C in Fig. 5. Even if this were done we still

need a maximum number of attempts at passing the 'three-hit' algorithm else we might never exit

from the 'walkdown' state. Claiming that this is a Guide Star, and that therefore something is known

regarding the star's surroundings and its apparent V magnitude, does not vitiate the argument. The

photometric precision of the Guide Star Catalog is only 4- 0.4 mag and there is a color term between

the northern and southern celestial hemispheres [i.e., J = V + 0.72(B - V)]. This has been adjusted

for, on the average, by assuming that the typical Guide Star is a K or M dwarf (so J __ V + 0.6 mag).

A less common spectral type will not be correctly handled with respect to the color index term.

The need for a parameter which fulfills the function of K 5 does not address the issue of why the

'walkdown' commences so far from the interferometer nulls. The alleged reason is that the TF can

not merely be (A - B)/(A + B) for this does not incorporate different sensitivities or responsivities

between the photomultiplier tubes on the A and B channels. This bias, say AAB , is subtracted from
the difference term in the numerator so that

S = A - B - LAB (4)
(A+ B)

(Remember that S is normalized by the mean value of the first 16 samples, hence the angular brackets

in the denominator.) AAB is calculated at the start of the 'walkdown'. Thus, this position must be

far enough from the interferometer nulls that the uncorrected value of the TF [i.e., (A- B)/(A + B)]

would almost vanish were the two photomultiplier tubes perfectly matched. (Sixteen 0.025 sec samples

are used to compute AAB. ) BY this mechanism the photomultiplier tube mismatch is always made
local--in time in case of aging of the tubes, in place on the celestial sphere in case of a variation

in the celestial background, and for this particular star in case it has an atypical color index. Even

more importantly, this procedure allows for the:failure of one of the photomultipfier tubes without

destroying the capability of obtaining and maintaining Fine Lock. However, the real reason a large

K B is necessary is that the field stops in front of the photomultipliers have become displaced. The
net instantaneous field-of-view is the intersection of the four stops. This causes a significant Coarse

Track/Fine Lock bias, up to one arc second.

As we step towards the interferometer nulls from the Coarse Track backoff position, we do so with

steps of size KD. (Perldn-Elmer Corp. originally used a value of 9 mas but it was since reduced, as

a result of this analysis, to near the optimum of 6 mas.) The smaller K D is the longer it will take to

execute the 'walkdown', the larger K 5 must be, and the more danger there is that the position-to-rate

converter, the piece of software in the FGE that actually computes the settings for the star selector

encoders, will stall. Remember that the star selectors are being commanded to move on the surface

of a sphere across a domain that has the shape of the FGS total field-of-view. Hence, the geometry is

non-planar and there is the possibility that a desired linear step will result in a very small projected

step. Since the posltion-to-rate converter is inhibited from taking very small steps--it has a 'least

significant bit criterion' of 3 bits (nominally; this is also adjustable)--too small a value of KD may

bring about this situation. Thus, the same portion of the TF will be repeatedly sampled. This is

actually a good thing to occur when we have a faint star and we are trying to satisfy the 'three-hit'

342



algorithm. Sincethe step we take is halved wheneverwe pass the above-thresholdquery after not
having passedit during the last 25 milli-secondphoton integration period, the possibility of a stall
increasesaswedecreaseK D just where, with respect to the TF, we want it to. Hence, the decision to

lower K D from its initial value when the poor performance of the Fine Lock process became apparent,
especially on fainter stars.

There are other bounds on K D. In particular, the above-threshold portion of the TF must be

at least 2KD wide and should preferably be 4K D across. Table 1 gives the two solutions to the

equation S(x) = KZ, for the S > 0 portion of the curve (the theoretical curve has odd parity) for a
variety of values of K z expressed as a percentage of the maximum value of the TF. To understand

the reasoning behind the 2K D and 4K D lower bounds to the width of the above-threshold portion

of the TF (see Fig. 5 again), consider the first step into the above-threshold portion of the curve

from the right. The largest this advance could be is K D. Suppose that this is the case and that

we pass the K Z threshold test. Then the step size would be halved and we would penetrate KD/2

further. Suppose that once more the K Z threshold test is satisfied. We would take one more KD/2

step, presumably pass the K Z threshold once again--now satisfying the 'three-hit' algorithm--and

then enter the null maintenance logic in the FGE. The total distance we traversed was 2K D. More

realistically we might want the width of the above-threshold portion of the TF to be large enough

to allow for one failing of the K Z test and still guarantee overall success at the 'three-hit' algorithm.

In the worst circumstances this requires an additional minimum distance of 2K D whence the 4K D

realistic lower limit. For the nominal (i.e., Perkin-Elmer Corp.) threshold setting the width of the

above-threshold portion of the theoretical TF was 22.4 mas or just less than 2.5K D for a K D of 9

mas. Since we can assume that the entrance into the above-threshold portion of the TF is randomly

and uniformly distributed, 4K D becomes 3.5K D in the mean or 21 mas (= 2.3 the Perkin-Elmer
Corp. value of KD).

Table 1. Fine Lock Values

XL XU Width

(mas) (mas) Kz " SMAX Kz (mas)

5.68 31.93 0.356 0.5 26.25

6.99 29.92 0.427 0.6 22.93

8.44 27.89 0.498 0.7 19.45

10.12 25.71 0.570 0.8 15.59

12.26 23.13 0.641 0.9 10.87

In addition, in the presence of excessive spacecraft jitter, we want both K D and K z to be as small

as possible. The reason is, once the jitter per axis becomes comparable to K D itself we have too high

a probability of being thrown outside the above-threshold portion of the TF by a bodily movement of

the spacecraft. Thus, we will (on the average) fail the K Z threshold test more often when the jitter

is larger. Within the FGE the only method we have of countering this is to maximize the number

of opportunities we can have to exceed the threshold. Lowering the threshold K z widens the above-

threshold portion of the curve and lowering K D maximizes the number of chances of testing against

the threshold. Finally, if optical imperfections in the OTA or the FGSs cause the empirical TF to

narrow with respect to the theoretical one, once again our only means of combating this within the

FGE is to reduce K D. Of course neither spacecraft jitter nor optical defects have to be symmetrical

with respect to the faces of the Koester's prisms, so there should have been a provision for a Kdz

and a Kdv.
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K Z is the much talked about threshold value. Since the most likely place to falsely declare the

'Fine Lock' state is when we traverse the secondary peaks in the TF (at the place marked SSE C in

Fig. 5), the optimum value of K Z which will prevent this is IS(XsEc)I + 3(rS(X = 0). I have used the

value of the standard deviation of the TF at the null because it is largest there. Such a three sigma

criterion, built on the highest possible non-peak pedestal, ought to safely prevent a satisfaction of the

'three-hit' algorithm almost everywhere during the 'walkdown' process. Uncritically using this value

can not be done because it gives no weight to how much of the above-threshold portion of the TF

peak we will cut off. As discussed in detail above, the minimum width of the above-threshold portion

of the TF is 3.5K D. A simplified model of the photon-noise induced variation in the TF predicts that

the standard deviation of the TF counts per axis from the star, the sky background, and the dark

current noise in the photomultiplier tubes is _ 0.05 hence, the lower limit to K Z can be safely met.

Finally, because the imperfections in the OTA and the FGSs are not required to affect the x and y

axis TFs in an identical manner, there should have been a provision for a Kzz and a Kzy.

The remaining two K-factors are used to adjust the instrumental TF, given in Eq. (4), into one

that will allow the FGE to succeed in the task of achieving the 'Fine Lock' state as per Eqs. (3). The

first one I shall discuss removes any bias. Suppose that owing to optical imperfections, movements

of the optical elements as a consequence of the exigencies of launch, deployment, or out-gassing, or

so on the positive peak of the instrumental TF is larger in magnitude than the negative peak of the

instrumental TF on the same axis. Then, we would not have an equal chance of passing the 'three-hit'

algorithm as we approached the interferometer null from the left and right sides. The purpose of K0x

and KOy is to offset any such bias so that the TF the FGE has to deal with is symmetrical with
respect to the probability of 'three-hit' algorithm passage. Thus, S in Eq. (4) becomes

S= A-- B- AAB + Ko (5)
(A+ B)

Of course there is now a S_: and a Sy because there is provision for a Koz and a Koy. The simplistic
value of K 0 is clearly the peak-to-peak distance minus half the absolute value of one of the extrema,
viz.

K 0 = [SMA X - eoMIN]- SMAX/2. (6)

This is the correct value for K0 when we are trying to maintain the fine lock state with the Guide

Star at the null of the interferometer. The reason is that this value of K0 makes it equally difficult

to climb over either extrema of the TF. This value for K0 does not equalize the probability of success

at the 'three-hit' altorithm [see §5.1, particularly just above Eq. (11)].

The two remaining K-factors, Klz and Kly, unfortunately are forced to serve quadruple roles!
Their first two functions are to correct the instrumental TF for the effect visible in Fig. 7. Because of

the addition of the two channel photon counts in the denominator of S, as in Eq. (4) or (5), while they

are subtracted in the numerator, the 'noise' component of the signal--namely the sky background

and the dark current noise in the photomultiplier tubes--is compounded in the denominator but is

eliminated in the numerator (on the average). Thus, as the Guide Star we are attempting to attain

the 'Fine Lock' state on gets fainter, the instrumental TF naturally has a decreased fringe visibility.

With Kz fixed as a percentage of SMAX, we may never pass the 'three-hit' algorithm for a fainter

star. The initial purpose of K 1 is to boost the instrumental TF so that the Kz threshold can be

successfully passed even for fainter stars. Thus, K1 must be a function of the apparent magnitude of

the star as well as be different for each axis and each FGS. Whence, the final FGE version of the TF

is given by

Q= KI { A- B-AAB }B-i + Ko (7)
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Figure 7. Decrease in fringe visibility with apparent magnitude.

Knowing what K1 is supposed to do, it is easy to compute its value (although this is not the Perkin-
Elmer Corp. procedure). The other three roles of K1 are more fully discussed in the next section.

Briefly, K1 is used during the walkdown to prevent a false lock, it is used in the Fine Lock state to

prevent a loss of lock, and it is simultaneously used in the Fine Lock state to minimize spacecraft

pointing errors.

Finally, with definitions for K0 and K1 we can refine the constraint on K Z discussed above and

shown in Fig. 5. The real version of this is

IK,(m)FSEC+ 3 S(0)]+ K01< KZ

to prevent a false fine lock during the walkdown. Conversely, the constraint

IK,(m)Kz+ KOI> KZ

must also be satisfied else passing the "three-hit" algorithm will not occur. Perkin-Elmer Corp.

always uses a zero value for K 0 and gl(m) given by Eqs. (9) and (10) is always near 1.1, so these

refinements have little practical effect.

5. ANALYSIS

5.1 Theory

Let us start with the 'walkdown.' We need to be far away from the secondary maximum (mini-

mum; we shall assume that the polarity is such that we are approaching from the right in Fig. 5) of

the TF in order for _AB = (A - B) to have meaning. From Fig. 5 any value of KB > 200 mas will
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do (i.e., less than half the Perkin-Elmer Corp. value). (Actually we can start as close as K B = 50 mas
if we use K 0 to remove the bias.) Until we encounter the maximum of the TF we are only interested

in not falsely locking. The place a false lock is most likely to occur is at the secondary maximum;

hence, a threshold value of K Z in excess of [SsEc] + 3aS(0 ) is desirable.

Throughout, and especially during passage through the maximum (minimum), we want to correct

for the effect in Fig. 7. The proper role of K1 = Kl(m) then, is to map the fainter curve into the

brighter curve. Specifically, imagine that we have a reference TF S obtained on a very bright star

of magnitude m S . We can assume that we have used both ends of the empirical curve to obtain

a statistically secure value for AAB = (A - B). Similarly we can use the entire curve to obtain a

noise-free estimate of C = (A + B/; whence

S = a- B- AAB (8)
C

Now A is composed of both reference star photon counts A S and 'noise' counts. The latter arise from

the sky background and the dark current noise. Symbolize the sum of the latter two components,

which we can not easily separate, by D. Therefore,

A = A S + D, B = BS + D.

Thus, on the average, we may recover A S and B S from Eq. (8),

A S=C(I+S)/2+SD/2, B S=C(1-S)/2-SD/2.

Now, for a Guide Star of apparent magnitude rn, A S and B S become a and/3 where

a = teAs, /3 = xB S with _; = dex[-0.4(m - ms) ].

Similarly C S = A S + B S becomes "7 = x_Cs and S becomes a,

a - /3

Clearly, then, the optimal value for Kl(m) is just

Kl(m)o" = S (9)

for this value of K1 transforms the faint star TF into the (bright) reference star TF everywhere. The

solution for K1 may be written as

K 1 = 1 + D(1/x- 1)/C. (10)

For real photomultiplier tube performance and realistic values of C (2 4 per photomultiplier tube

per 0.025 see), K1 ranges from 1.017 to 1.18 as m ranges from 12.5 mag to 15.0 mag.
Before we leave the 'walkdown' and the possibility of false lock, if a real TF has a bias, then

it has to be counteracted. Perkin-Elmer's theoretical value of K0 was given in Eq. (6) and it only

adjusts the extrema (in practice they always set K 0 equal to zero). As this value has to offer an equal

probability of success at the 'three-hit' algorithm, this is too simplistic. In order to understand this

I must digress abit further.

Irregular bodily motions of the spacecraft, that is jitter, are deadly to the probability of success

of the 'three-hit' algorithm. When compounded by too large a value of KD, too high a value of KZ,

or an instrumentally narrowed set of above-threshold widths W+ and W_, the probiem becomes even

more acute. (W+ are the linear widths of the above-threshold portions of the TF on the positive and
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negativesidesof the interferometer null.) Now, with a jitter amplitude > 1.5 K D or > W+/2 or

W_/2, there is a reasonably high probability of being thrown out of the above-threshold portion of

the TF even though the Star Selector encoders have been properly commanded to keep us within the

desirable portion of the curve. Once on the shoulders of the extrema of the TFs the probability of
passing the KZ threshold test is much diminished, hence no Fine Lock state.

One cure for this is to double our chances of achieving Fine Lock by attempting to pass the 'three-

hit' algorithm criteria on both extrema of the TF. [Indeed the real FGE accepts above-threshold

crossings from both extrema sequentially (should this occur).] Hence, the desire to have both halves

of the curve be symmetrical with respect to this point. Clearly the sense in which they need to made

symmetrical is that the two widths be made equal; W+ = W_ and not that SMAX = ISMINI. Thus,
the implicit criterion defining/CO is just

i

W+ = W-. (11)

So far we have fixed /to, KI, and K B. K D sl_ould be as small as possible such that once it

is halved, it will not cause the Star Selector servos to stall (Kll determines the least significant

bit criterion in the position-to-rate converter). K z must be determined by actually simulating the

'walkdown' and threshold-crossing process with an overall figure of merit, for the entire procedure,
in mind. KZ _- 0.45 is typically optimal.

This brings us to another essential point not considered by Perkin-Elmer Corp. In assessing the

performance of a complicated electro-optical system such as an FGS, especially in a situation wherein

the device is remotely located and it is (effectively) impossible to repair or alter it, the maximum

amount of flexibility must be built in after a thorough analysis of the entire system's operation has

been conducted. Such an analysis should include all of the obvious things which might go wrong

as well as a few of the things which can not possibly (sic) go wrong. In the end, the non-linear

optimization has to be decided on by an overall figure of merit. None of this is evident in Perkin-

Elmer Corp. documentation. As a specific example consider the Fine Lock process we have been

discussing. There are four different functions to successfully perform during the Fine Lock process:

(i) Avoid a false lock during the 'walkdown'; (ii) Achieve success at the 'three-hit' algorithm and

do these two things reliably for V "_ 14.5 mag stars; (iii) Once Fine Lock is achieved maintain a

position near the interferometer null, that is avoid a loss of lock; and (iv) Maximize the pointing

system's stability. Perkin-Elmer makes one value of K1 try to perform all four of these things with no

thought given to an overall optimization. (In fact, they choose K 1 solely to satisfy the no loss-of-lock
criterion.)

5.2 Numerical Experiments

Late in 1990 a single bright star (Upgren 62, V = 9.55 mag) was placed in nine different locations

of each FGS field-of-view and five transfer scans obtained. From these nonets two curves per axis per

FGS were selected; one as "typical" and one as "unusual". For this set of a dozen single axis TFs a

detailed simulation of the walkdown, three-hit algorithm, and null maintenance aspects of Guide Star

acquisitions were simulated. Some generalities followed, to wit: (1) Spacecraft jitter, above 5 mas

per axis on a 0.025 second timescale, is deadly to three-hit algorithm satisfaction. Fortunately real

spacecraft jitter does not have high frequency components of this amplitude. All further simulations

were performed with a real spacecraft jitter file rather than a 40 Hz Gaussian as previously. (2)

K B needs to be as small as the Coarse Track/Fine Lock bias will allow. A larger value of K B just

increases the probability of a lock on photon noise during the walkdown stage. (3) K D should be

just larger than twice the position-to-rate converter stall value. This greatly helps the probability

of success at the three-hit algorithm while only minimally extending the time interval necessary to

accomplish the walkdown stage. (4) K 0 = Ko(K2 ) is a complex function whose utilization has still

not been thoroughly explored. (5) Real TFs are asymmetrical and the inability to have even a quartet
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of directional options will diminish the probability of fulfilling the scientificgoalsof the HST mission;
and (6) Large,rapidly fluctuating jitter is deadlyto the maintenanceof fine lock, especiallyfor fainter
stars.

Before the large set of numericalexperimentsmentionedabovewereconducted, theoretical TFs,
such asthoseshownin Fig. 5, wereused to test and debug the tripartite simulator software. Even
before I had real TFs and real jitter files, the abovelist of generalitieswasplainly evident. Thus,
only a very limited subsetof all the results sofar obtained arepresentedbelow.

Table 2 showsthe resultsof a more focusedset of numericalexperiments (K D = 6 mas, K0 = 0,

real spacecraft jitter). There are twelve sets of results in Table 2, four for each FGS. The origin of

these quartets are two doublets, one for each axis (i.e., x or y) in each FGS. Each component of the

doublet is chosen from among the nine points in the aforementioned engineering test. After manual

evaluation of the TFs at each of those nine places two were selected; one being close to the pre-launch

theoretical expectation and one being typically realistic for that axis in that FGS. The full FGE

software simulator, with a real jitter file, was executed on each of the dozen curves and the various

probabilities of success were computed. In no case, for reasonable values of the K factors, was a loss

of lock ever encountered for a (simulation) time duration of 10 minutes (i.e., 40 × 60 x 10 executions

of the null maintenance logic given a randomly placed start in between the extrema of the TF). Thus,

the probability of a loss of lock, with this jitter file, is zero and will not be further discussed. A more

indepth analysis of the jitter file shows it to be a little more quiet than is typical, hence it is still

premature to say that we know how to prevent a loss of lock during non-terminator crossing induced

disturbances. (One reason this jitter file was chosen was that it was a very long one--this selection

effect biased it towards being unusually uneventful too.)

Table 2 contains the probability of success of the three-hit algorithm during threshold crossing Pt,

the probability of success of the three hit-algorithm during the walkdown stage, Pw, and the overall

probability of success

Ptot = (1 - Pw) * Pt * (1 - Ploi)

where Plol is the loss of lock probability. There are two rows per Guide Star apparent V magnitude,

one for the highest value of Ptot and one for the second highest value (as the K factors were varied). By

giving both of these one can evaluate the sensitivity of the optimal state with regard to perturbations.

Each apparent magnitude also has two columns, one for each direction of approach that the FGE
allows.

Perusing Table 2 one can rapidly conclude that guidance on fainter Guide Stars than we are

currently using is eminently probable if one controls the FGS in a rationally determined manner.

There is also a marked asymmetry in some of the results so that the direction of approach is an

important variable and should not merely be left at the pre-launch (default) value. The asymmetry

in the TF is a non-linear combination of primary mirror misfiguring, secondary mirror misplacement

(both in tilt and in decenter), and in individual FGS mechanical and optical defects. None of this,

beyond the existence and magnitude of the primary mirror spherical aberration, is understood nor

capable of even being modeled (at the moment; the model I have suggested for the optical aberrations

Perkin-Elmer Corp. refuses to even numerically attempt). In particular, if one starts at the outer

edge of the FGS in Radial Bay #1 and moves across its field-of-view towards the FGS in Radial Bay

#2 there is a continous change in the shape of the TFs which carries over to the next FGS, through

its field-of-view, and then into the next FGS. This marked, field dependent, shape deformation can

only arise in the OTA and can not be spherical aberration!

What does the software simulator have to say about the current K factor settings? These results

are in Table 3 along with the my best overall success probabilities for the same apparent magnitudes

(remember that Table 3 includes a significantly reduced value of KD so that the probability of false

lock during the walkdown stage is a little increased and that the probability of a successful lock
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Table 2. FGE Simulator Results

Left Right

V KZ K1 Pt Pw Ptot KZ KI Pt Pw Ptot

FGS1-X1

13.25 0.45 0.90 100.0 0.0 I00.0 0.55 0.90 99.5 0.5 99.0

0.55 1.00 99.5 0.0 99.5 0.55 1.00 99.5 1.0 98.5

14.00 0.55 0.80 93.0 3.5 89.7 0.65 1.00 95.5 3.5 92.1

0.65 1.00 92.5 4.5 88.3 0.55 0.80 92.0 2.5 89.7

14.75 0.65 0.80 79.5 16.5 66.4 0.65 0.80 68.0 28.0 49.0

0.65 0.90 87.5 36.5 55.6 0.75 0.90 63.0 27.0 46.0

FGS1-X2

13.25 0.65 1.00 98.0 2.5 95.6 0.65 1.00 99.5 7.5 92.0

0.55 0.90 100.0 4.5 95.5 0.65 0.90 94.5 3.0 91.7

14.00 0.65 0.80 84.5 8.0 77.7 0.65 0.80 82.5 19.0 66.8

0.75 0.90 76.5 7.0 71.1 0.65 0.90 95.5 32.0 64.9

14.75 0.75 0.80 53.0 38.5 32.6 0.75 0.80 61.0 44.0 34.2

0.65 0.80 78.0 67.5 25.4 0.75 0.90 75.0 74.0 19.5

FGS1-Y1

13.25

14.00

14.75

0.45 0.80 100.0 0.0 100.0 0.45 0.80 100.0 0.0 100.0

0.55 0.80 100.0 0.0 100.0 0.45 0.90 100.0 0.0 100.0

0.55 0.90 100.0 1.5 98.5 0.55 0.80 99.5 1.O 98.5

0.65 1.00 98.5 0.5 98.0 0.55 0.80 98.0 0.5 97.5

0.65 0.90 90.0 10.5 80.6 0.65 0.90 93.0 9.0 84.6

0.65 0.80 80.0 1.0 79.2 0.75 1.00 89.0 9.0 81.0

FGS1- Y2

13.25 0.45 0.80 100.0 0.0 100.0 0.45 0.80 100.0 0.0 100.0

0.55 1.00 100.0 0.0 100.0 0.55 1.00 100.0 0.0 100.0

14.00 0.55 0.80 97.0 0.0 97.0 0.55 0.90 100.0 3.0 97.0

0.65 1.O0 97.5 1.5 96.0 0.65 1.00 96.5 0.0 96.5

14.75 0.55 0.80 95.0 17.5 78.4 0.65 0.90 87.5 33.0 58.6

0.75 1.00 80.5 7.5 74.5 0.75 1.00 77.5 24.5 58.5

FGS2-X1

13.25

14.00

14.75

0.55 0.80 93.5 93.0 6.5 0.55 0.80 94.0 85.0 14.1

0.45 0.80 98.5 98.5 1.5 0.55 0.90 99.5 97.5 2.5

0.55 0.80 93.5 99,5 0.5 0.45 0.80 100.0 100.0 0.0

0.45 0.80 100.0 100.0 0.0 0.45 0.90 100.0 100.0 0.0

0.45 0.80 100.0 100.0 0.0 0.45 0.80 100.0 lO0.O 0.0

0.55 0.80 99.5 100.0 0.0 0.55 0.80 100.0 lO0.O 0.0
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Table 2. Continued

V Kz K1

Left

Pt Pw Ptot KZ K1

Right

Pt Ptot

FGS2-X2

13.25 0.55 0.80 98.0 1.5 96.5 0.55

0.65 1.00 98.0 2.0 96.0 0.65

14.00 0.65 0.80 85.0 10.5 76.1 0.65

0.65 0.90 93.0 38.0 57.7 0.65

14.75 0.65 0.80 85.5 74.5 21.8 0.65

0.65 0.90 91.5 91.5 7.8 0.65

0.80

1.00

0.80

0.90

0.80

0.90

99.5

100.0

83.5

90.0

76.5

84.0

1.5

4.0

17.0

34.5

70.0

90.0

98.0

96.0

69.3

59.0

23.0

8.4

FGS2- YI

13.25 0.65 0.80 91.5 1.0 90.6 0.65 0.80 89.0 7.0 82.8

0.65 0.90 94.5 6.0 88.8 0.65 0.90 98.5 16.0 82.7

14.00 0.75 0.80 72.0 1i.5 63.7 0.65 0.80 90.0 40.5 53.6

0.65 0.80 87.5 32.5 59.1 0.75 0.80 64.0 21.5 50.2

14.75 0.75 0.80 64.0 83.5 10.6 0.75 0.80 63.5 89.5 6.7

0.75 0.90 78.5 96.5 2.7 0.65 0.80 85.0 97.0 2.6

FGSe-Y2

13.25 0.55 0.80 95.0

0.75 1.00 85.5

14.00 0.75 0.80 61.0

0.75 0.90 75.0

14.75 0.75 0.80 68.0

0.75 0.90 78.0

FGS3-X1

13.25 0.55

0.55

14.00 0.55

0.65

14.75 0.75

0.65

17.0 78.9 0.65 0.80

8.0 78.7 0.65 0.90

29.0 43.3 0.75 0.80

52.5 35.6 0.75 0.90

88.0 8.2 0.75 0.80

95.5 3.5 0.75 0.90

81.0

89.0

61.5

73.5

63.0

68.0

9.0

24.5

25.5

38.0

77.5

95.5

73.7

67.2

45.8

45.6

14.2

3.1

0.90 100.0 0.0 100.0 0.45 0.80 100.0 0.0 100.0

0.80 99.5 0.0 99.5 0.55 0.80 99.5 0.0 99.5

0.80 98.0 6.5 91.6 0.65 0.90 93.0 2.0 91.1

0.90 93.5 2.0 91.6 0.55 0.80 97.5 8.0 89.7

0.90 75.5 14.0 64.9 0.65 0.80 88.5 24.5 66.8

0.80 75.0 14.5 64.1 0.75 0.90 82.5 20.0 66.0

FGS3-X2

13.25 0.45 0.80 100.0 0.0 100.0 0.55 0.80 100.0 0.5 99.5

0.45 0.90 100.0 0.0 100.0 0.65 1.00 99.5 0.0 99.5

14.00 0.55 0.80 98.0 2.0 96.0 0.55 0.80 97.5 2.0 95.6

0.65 0.90 97.0 1.5 95.5 0.65 1.00 98.0 3.0 95.1

14.75 0.65 0.80 76.5 15.0 65.0 0.65 0.80 86.0 6.0 80.8

0.65 0.90 86.0 29.0 61.1 0.65 0.90 90.5 14.0 77.8
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Table 2. Continued

Left Right
V KZ 1(1 Pt Pw Ptot KZ K1 Pt Pw Ptot

FGS3- Y1

13.25 0.45 0.80 99.5 0.0 99.5 0.45 0.90 100.0 0.5 99.5

0.65 1.10 98.5 0.0 98.5 0.45 0.80 99.5 0.5 99.0

14.00 0.55 0.90 95.0 6.5 88.8 0.45 0.80 98.0 14.0 84.3

0.65 1.10 96.0 7.5 88.8 0.55 0.90 89.0 7.5 82.3

14.75 0.55 0.80 77.0 29.5 54.3 0.55 0.80 75.0 28.5 53.6

0.65 0.90 72.0 22.5 55.8 0.55 0.90 80.0 50.0 40.0

FGS3- Y2

13.25 0.45 0.80 100.0 0.0 100.0 0.45 0.80 100.0 0.0 100.0

0.55 0.90 100.0 0.0 100.0 0.45 0.90 100.0 0.0 100.0

14.00 0.65 1.20 100.0 0.0 100.0 0.55 0.90 99.0 1.0 98.0

0.75 1.20 100.0 0.0 100.0 0.55 1.00 99.5 1.5 98.0

14.75 0.55 0.80 94.0 7.5 90.0 0.55 0.80 90.5 18.5 73.8

0.65 1.00 93.0 8.0 85.6 0.65 0.90 84.5 10.0 76.1

during the threshold crossing stage is dramatically increased). Two things stand out in Table 3;

Perkin-Elmer Corp.'s K1 is much too large and, as a consequence, their probability of false lock

during the walkdown often reaches certainty. The real cause of this is that the TFs which led to

the Pw = 100% values are double humped; they are so deformed that to speak of a maximum and

secondary maximum, as illustrated in Fig. 5 is very misleading. The height of the 'secondary' peak is
sometimes more than half that of the primary. Thus, when an excesssively large value of K1 is used,

it becomes almost a certainty that lock will occur on the secondary peak (as long as the direction

of approach is such that this must be encountered; since it is rare to have both secondary extrema

pronounced, this is another reason to vary the direction of approach with each FGS). Remember too
that the/(1 values in Table 3 are real whereas those in Table 2 are relative to the nominal value of

K1 given by Eq. (10). As the nominal value is typically 1.1, Perkin-Elmer Corp.'s values of K1 are

2-3 times larger than the ones I would suggest.

This has severe operational consequences. First of all, when viewed as a successful or unsuccessful

lock it gets counted as a successful one. It is rarely a stable one because jitter has a much easier

job driving the FGE over the secondary hump. When this happens we are so far away from the

true null that automatic recovery will almost never succeed. Similar remarks apply to a photon-

noise induced loss of lock from the secondary null. A second negative consequence of locking on

the secondary peak is that the telescope is mis-pointed by the distance between the two nulls. This

is fatal to astrometry and fairly important for general target acquisition since the FGS to Science

Instrument aperture alignment will be thrown off. This can easily amount to 50 mas. All of the

above, easily predictable, consequences have frequently occurred with the real spacecraft. Now there

is a straightforward, unified, explanation for them.
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Table 3. FGE P-E Simulator Results

LGT

V Kz K1 Pt Pw Ptot Ptot

13.00 0.42 1.86 100.0 15.5 84.5 99.0

14.00 0.42 2.04 97.5 71.5 27.8 92.2

13.00 0.42 1.86 0.0 100.0 0.0 91.7

14.00 0.42 2.04 0.0 100.0 0.0 66.8

13.00 0.42 1.56 100.0 1.5 98.5 100.0

14.00 0.42 1.62 100.0 17.0 83.0 100.0

13.00 0.42 1.56 100.0 2.0 98.0 100.0

14.00 0.42 1.62 97.0 18.0 79.5 97.0

13.00 0.42 1.98 0.0 100.0 0.0 14.1

14.00 0.42 2.22 0.0 100.0 0.0 0.0

13.00 0.42 1.98 0.0 100.0 0.0 98.0

14.00 0.42 2.22 0.0 100.0 0.0 69.3

13.00 0.42 2.46 0.0 100.0 0.0 82.3

14.00 0.42 2.70 0.0 100.0 0.0 53.6

13.00 0.42 2.46 0.0 100.0 0.0 73.7

14.00 0.42 2.70 0.0 100.0 0.0 45.8

13.00 0.42 1.50 97.5 3.5 94.0 100.0

14.00 0.42 1.68 90.5 24.5 68.3 91.1

13.00 0.42 1.50 0.0 100.0 0.0 99.5

14.00 0.42 1.68 0.0 100.0 0.0 95.6

13.00 0.42 1.62 11.5 2.5 11.2 99.0

14.00 r 0.42 1.74 13.0 21.5 10.2 82.3

13.00 0.42 1.62 100.0 1.5 98.5 100.0

14.00 0.42 1.74 99.5 32.0 67.7 98.0
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ABSTRACT

This paper presents a detailed review of the in-flight calibration of the Hubble Space Telescope

attitude sensors. The review, which covers the period from the April 24, 1990, launch of the

spacecraft until the time of this writing (June 1991), describes the calibrations required and

accuracies achieved for the four principal attitude sensing systems on the spacecraft: the

magnetometers, the fixed-head star trackers, the gyroscopes, and the fine guidance sensors

(FGSs). In contrast to the other three sensor groups, the Hubble Telescope's FGSs are unique in

the precision and performance levels being attempted; spacecraft control and astrometric research

at the near-milliarcsecond level are the ultimate goals. FGS calibration accuracies at the

20-milliarcsecond level have already been achieved, and plans for new data acquisitions and

reductions that should substantially improve these results are in progress. This paper presents a

summary of the basic attributes of each of the four sensor groups with respect to its usage as an

attitude measuring system, followed by a discussion of the calibration items of interest for that

group. The calibration items are as follows: for the magnetometers, the corrections for the

spacecraft's static and time-varying magnetic fields; for the fixed-head star trackers, their relative

alignments and use in performing onboard attitude updates; for the gyroscopes, their scale factors,

alignments, and drift rate biases; and for the FGSs, their magnifications, optical distortions, and

alignments. The discussion covers the procedures used for each calibration, as well as the order of

the calibrations within the general flow of orbital verification activities. It also includes a synopsis

of current plans for the eventual calibration of the FGSs to achieve their near-milliarcsecond design

accuracy. The conclusions include a table indicating the current and predicted ultimate accuracies

for each of the calibration items.
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I. INTRODUCTION

The ultimate scientific goals of the Hubble SpaceTelescope(HST) mission require relative

pointing accuracyon theorderof a few milliarcsecondsfor targetobjectswithin thetelescope's

1/2-degree-diameterfield-of-view (FOV). This high accuracyis to be achieved using the

spacecraft'sfine guidancesensors(FGSs),manufacturedby HughesDanbury Optical Systems,

which allow the spacecraftto maintainpointing relativeto a preselectedset of guidestars. The

milliarcsecondaccuracyrequirementsfor useof theFGSsdictateequally demandingaccuracy

requirementsfor their calibration. Oneof thepurposesof thispaperis to presentanoverviewof
themultistageprocedureusedfor thecalibrationof theFGSsandtheresultsobtainedto datefor

that procedure. Another purposeis to describethe broader,sensorcalibration contextwithin
which the calibrationof the FGSsfits. The FGSFOVs arerestricted to the outer4-arcminute

annulusof thetelescope'sfull FOV. Becauseof thesmall sizeof the FGSFOVs, aswell asthe

significant amountof time required to find guide starsusing the FGSs,auxiliary systemsare

requiredfor determiningandcontrollingattitudeatcoarserlevels. Theprincipalauxiliaryattitude

determination sensorsare the HST magnetic sensingsystem (MSS), manufacturedby the

SchonstedtInstrumentCompany;the fixed-headstar trackers(FHSTs),manufacturedby Ball

AerospaceSystemsDivision; andtherategyroassemblies(RGAs),manufacturedby Allied Signal

AerospaceCorporation. Useof these"auxiliary" systems,sometimesas theprincipal attitude

sensingdevices,hasbeencommonon manypreviousspacecraft(seeReference1). This paper

reportson theproceduresusedfor the in-flight calibrationof eachof theseauxiliary sensorgroups

for theHST mission. Thedescriptionof thecalibrationof theFGSsfollows thatof the auxiliary

sensors,parallelingtheactualsequenceof eventsfollowedduringtheorbitalverificationphaseof
theHSTmission.

Thedatareductionandanalysisalgorithmsusedfor thesensorcalibrationactivitiesdescribedin

thispaperhavebeenimplementedwithin theHST PayloadOperationsControl Center(POCC)

Applications SoftwareSupport(PASS) systemdevelopedby ComputerSciencesCorporation

(CSC)undercontract to the National Aeronauticsand SpaceAdministration / Goddard Space

Flight Center (NASA/GSFC). The requirements for the PASS system, which continues to evolve,

are documented in Reference 2. It is primarily from the author's perspective as a developer and

user of the PASS system that this paper is written.
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II. OVERVIEW OFHSTAND ITS ATI'ITUDE SENSORS

Figure 1 shows the generallayout of HST, including the locationsof someof the important

systems.Thereadershouldnotein particularthelocationsof theindicatedmagnetometer,magnetic

torquer (MT), FHST, RGA, and FGS. (Companion instruments of each type are located

symmetricallyaboutthespacecraft.)Thefigurealsoindicatesthelocationsof theopticaltelescope

assembly(OTA), which comprisestheprimaryandsecondarymirrors andtheirmountingsystem,

andoneof thescientificinstruments(Sis). In addition,it illustratesthestandardreferenceframeof

the spacecraft,with axes(V1,V2,V3), whereVI is along the primary viewing direction of the

satellite,V2 is along the axisof theport sidesolar array,andV3 is along the upperhigh-gain

antennaboom. [Theseareonly approximatedefinitions;in actualoperationsthespacecraftaxesare

definedby the selectedalignmentmatrix for FGS-2 (theFGSindicatedin Figure 1). All other

referenceframesof interestarethenmeasuredrelativeto this fiducial frame.]

The four HST sensingsystemsof principal concernin this paper,theMSS,FHSTs,RGAs,and

FGSs,arediscussedin SectionsIV, V, VI, and VII, respectively. Calibration of the sensors

proceedsin essentiallythe sameorderin which theyarediscussedhere. As an indicationof the

challengeinvolved with thefull calibration,a few ballparknumbersareworthmentioningat this

point. As notedin SectionI, the designaccuracyof the FGSsis a few milliarcseconds. The

prelauncherrorsin FGS calibration were estimatedto belarge enoughto causeerrors of up to

10arcsecondsin measuredrelativestarseparations.Therelativemountingerrorbetweendistinct

sensorswasestimatedto beapproximately5 arcminutes.Finally, theerror in HST attitudeat the

timeof spacecraftreleasefrom theshuttle'sremotemanipulatorsystem,aswell astheattitudeerror

during spacecraftrecoveryfrom a softwaresunpointsafemodesituation,wereestimatedto beon

theorder of 6 degrees. HST's attitudedeterminationand sensorcalibrationrequirementsthus

rangeover a factor of nearly 107in pointing resolution. Calibration of the MSS providesthe

capabilityto determinespacecraftattitudesto within approximately3 degrees.This is sufficiently

accurateto allow identification of starsobservedby theFHSTs. Attitudesdeterminedwith the

FHSTsprior to calibrationof their relativealignmentsweregoodto approximately10arcminutes

(theextrafactor of 2 enteringbecauseof thegeometryof therelativemountingsof the trackers).
Following alignment calibration, attitudes can be determined with FHST data to within

approximately20 arcseconds.UsingFHSTdatato determinespacecraftattitudes,theRGAscan

355



MT

OTA

FGS

HIGH-GAIN ANTENNA

;NETC

V2

V3

V1

S! SOLARARRAY

FHST

Figure 1. Hubble Space Telescope

356



be calibrated well enough to allow large-angle maneuvers with an accuracy of better than 60 arc-

seconds. The accuracy of FHST attitudes also puts the system in the domain of the FGSs, at least

after FGS calibration has proceeded through its initial stages. Detailed FGS calibration prepares

the satellite to undertake its scientific objectives. A more detailed overview of each of these levels

of calibration is given in the following sections.

lII. GENERIC ATTITUDE DETERMINATION AND SENSOR ALIGNMENT

Much of the work described in this paper relies on the determination of either spacecraft attitude or

sensor orientation based on a comparison of sensor-detected direction vectors (i.e., star direction

vectors or geomagnetic field directions) to a known reference for those vectors. The mathematical

problem is to find the attitude transformation matrix, A, that minimizes the loss function

L(A) = 1/2 Z[ (IW i -AX i I/t5 i)2 ] (1)

where

W i =

X i =

_5i =

i-th observation vector

associated reference vector [in geocentric inertial (GCI) coordinates]

associated angular uncertainty

and the sum is over all observations. For the sensors discussed in this paper, X i is obtained either

from a star catalog (when FHST or FGS data are being used) or a geomagnetic field model (when

MSS data are being used). Solving for the attitude matrix A requires a minimum input of two

noncolinear observation vectors, with best results achieved for cases where substantial angular

variation between vectors is involved. The algorithm used in PASS for the determination of the

matrix A is one originally developed by P. Davenport and refined by M. Shuster. A complete

discussion of the algorithm can be found in Reference 3.

357



The lossfunction of Equation1canbeusedasthebasisof analgorithmfor thedeterminationof

therelativealignmentsof two independentvector-directionsensors,or therelativeattitudechange

of agiven sensoroveraperiodof time. Indeed,thePASSsystemusesthis approachin certainof
its algorithms. Another possible approachfor the determinationof a set of transformation

matrices, {T1, T2..... TN}, that link a set of N sensorsto a common referenceframe is to

minimizethelossfunction

where

L( T 1, T 2 ..... T N ) = 1/2 Y. [ ( Cw,(p.i)(vj ) - Cx,(_ti)(vj ) ) 2 / (S(p.i)(vj) )2 ] (2)

Cw,(_i)(vj) =

Cx,(lai)(vj) =

Wlli, Wvj =

Xl.ti, Xvj --

(S(p.i)(vj) )2 =

°gi, °vj =

( W_i" Wvj )

( TtxXlxi • TvXvj )

i-th and j-th observation vectors in sensors p and v, respectively

associated reference vectors

( _p.i 2 + _vj 2 ) (Wp. i x Wvj )2

angular uncertainty for the i-th and j-th observations in sensors

kt and v, respectively

and the sum is performed over all pairs of unique observations between distinct sensors. (Note

that (S(gi)(vj) )2 is the variance associated with Cx,(l.ti)(vj). ) The PASS procedure for solving

for the set {T 1, T 2 ..... TN} in the case of relative FHST-to-FHST or FHST-to-FGS alignment

determination is documented in Reference 2.

IV. CALIBRATION AND USE OF THE MAGNETOMETERS

The HSTMSS consists of two magnetometers mounted on the outer hull of the satellite near

the forward aperture. The magnetometers are designed to have a range of approximately -0.6 to

+0.6 gauss, with a resolution of 0.0048 gauss per count. The MSS can be used to measure the

local geomagnetic field in the spacecraft reference frame. These measurements, if taken over a suf-

ficiently long period of time (i.e., at sufficiently many distinct positions in the spacecraft orbit) to
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allow significant variation of the sampled geomagnetic field, can be used in conjunction with a

geomagnetic field model (e.g., Reference 4) to determine the spacecraft attitude. Empirically it has

been found that 20 minutes of MSS data allow determination of the attitude to within approximately

3 degrees, sufficient to allow attitude determination with the FHSTs.

The achievement of 3-degree attitude accuracy with MSS data requires some in-flight calibration of

the MSS, part of which must be done before an accurate estimate of the spacecraft attitude has been

determined. The most important in-flight calibrations of the MSS pertain to the magnetometers'

response to the magnetic field generated by the spacecraft itself. This field may be divided into two

parts: (1) a static bias produced by the magnetization of the spacecraft as a whole (including any

intrinsic magnetometer bias) and (2) a time-varying field produced by the spacecraft's magnetic

torquing system (MTS), which is part of HST's momentum management system. (The MTS field

is used to couple the spacecraft to the Earth's magnetic field, which allows the dumping of excess

spacecraft angular momentum to the Earth's field.) Both of these field components must be either

eliminated or compensated for before application of the attitude determination algorithm will yield

accurate results. The MTS-generated field can be removed by the deactivation of the MTS, a

procedure that was used during the acquisition of MSS data shortly after HST's release from the

shuttle's remote manipulator system. With all time variation of the measured magnetic field being

due to motion of the spacecraft through the geomagnetic field, it is possible to determine the static

spacecraft magnetic bias without knowledge of the spacecraft's attitude; the algorithm used by the

PASS system for this initial bias determination is presented in Reference 5. The magnitude of

HST's static field at the locations of the two magnetometers at the start of the mission was found to

be roughly 0.020 gauss, with an uncertainty of 0.006 gauss. With the static bias determined, the

MSS data were then reprocessed to provide an estimate of the spacecraft's attitude accurate to the

aforementioned 3 degrees. This in turn allowed use of the FHSTs to commence.

Given an independent means of determining the attitude of the spacecraft (i.e., using the FHSTs),

it is possible to calibrate the MSS for better estimates of its sensitivity to static bias and MTS-

generated fields. The currently implemented algorithm for correcting MSS data for the effects of

the MTS-generated magnetic fields is based on the MTS model used by the onboard computer for

its momentum management computations. MTS field strengths at the locations of the magnetom-

eters are estimated to be typically about 0.05 gauss. For the purposes of HST's momentum
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managementneeds,it was foundthattheMTS field canberepresentedasa simpletime-varying
magneticdipoleatthecenterof thesatellite.Thisapproximationwasincorporatedinto theground-
basedattitude determinationsoftware to correct MSS data for the effectsof the MTS field.

In-flight calibrationof theMSS toaccountfor thetwo spacecraftfield sourcesis calculablevia the
minimizationof thelossfunction

where

Lt.t = ]g (Bit i -bit - TItD i - AiR i )2 (3)

Bgi = magneticfield vectormeasuredbymagnetometerIt attimei

bit = , staticbiasvectorat magnetometerIt (to besolvedfor)

Tg =

=

A i =

R i =

MTS coupling matrix for magnetometer It (to be solved for)

MTS dipole moment vector at time i

GCI-to-HST attitude transformation matrix at time i

geomagnetic reference field at HST's location at time i

The loss function used in PASS for the determination of b_. and Tit is actually somewhat more

complicated :than that of Equation 3 in that it also allows for an adjustment of the magnetometer

alignment matrices. The details of the algorithm used to minimize the loss function are documented

in Reference 2. A preliminary, "full" MSS calibration was performed a few months after launch.

Approximately 600 data points, taken at 30 well-distributed attitudes and over the full range of

MTS current readings (-2000 to + 2000 amperes • metersZ), were used in the calibration. The

accuracy for the postcalibration correction for static and time-varying magnetic fields as sensed at

the magnetometers was found to be approximately 0.005 gauss. Empirically it has been found

that, for data taken within a few weeks of the calibration, use of the in-flight calibration parameters

allows attitude determination with the MSS to within about 3 degrees even with the MTS active.

In contrast, if in-flight calibration values for the static bias are applied, but prelaunch values for the

MTS coupling matrix are used, the determined attitudes are accurate to only about 6 degrees. A

subsequent review of the accuracy of MSS-derived attitudes has suggested a secular variation of

the static bias. The details of this secular variation remain under investigation.
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A refinementto themodelfor representingtheMTS-generatedfield isbeingconsidered.TheMTS

consistsof four magnetictorquerbarswhoseseparationsfrom eachotherareaboutone-thirdtheir

separationsfrom the magnetometers.For this reasonit hasbeensuggestedthat a betterMTS
modelwouldusefour dipoles,eachcenteredatthe locationof oneof thebars.Whentimepermits,

this enhancementto the representationof the MTS field may be incorporatedinto the PASS

system.

V. CALIBRATION AND USEOFTHE FIXED-HEAD STARTRACKERS

TheHST FHSTsystemconsistsof threestarcameras,eachhavingan8-degree-by-8-degreeFOV

andcapableof detectingstarswithin thevisualmagnituderangeof approximately2 to 6 mv. As

indicatedin Figure 1,theFHSTFOVsaredirectedsignificantlyawayfrom theprincipalaxisof the

telescope. FHST-1 is mountedso as to haveits boresightapproximatelyalong the -V3-axis.
FHST-2 and FHST-3 aremountedsoas to point downwardsand backwardsin the spacecraft

referenceframe. Their boresightdirection-vectorsarelocatedwithin aplanerotatedapproximately

45degreesabouttheV2-axisawayfrom theV2/V3 plane,theindividualboresightdirectionsbeing
30degreesto eithersideof theV1/V3 plane. TheHSTdesignimposestheoperationalrestriction

that only two FHSTscanbe active simultaneously.The one-sigmaaccuracyof the HST star

trackersis estimatedto beapproximately11arcseconds.This 11-arcsecondaccuracyfor asingle
FHST is obtainedafterdistortion effectshavebeenremoved. FHST distortion is a function of

positionwith theFOV, ambienttemperatureandmagneticfield conditionswithin thetracker,and

brightnessof the observedstar. Calibrationof theFHSTs for distortion wasperformedon the

ground,will notberepeatedin orbit, andwill notbe furtherdiscussedin thispaper.

The FHSTsoperatein a numberof modes,two of which arerelevantto thediscussionsof this

paper. Thefirst, mapmode,simplycausesagivenFHST to scanacrossits entireFOV andrecord

all starsthatit detects.Whenoperatingin mapmode,theFHSTsaretypically configuredto have

anobservingrateof approximatelyone starevery20 secondsperactive tracker. Ground-based

attitudedeterminationis performedusingmapmodedataandtheleast-squaresalgorithmassociated

with Equation1. It is by meansof suchground-determinedattitudesthattheonboardcomputer's

attitudeknowledgeis initialized (e.g.,afterspacecraftreleasefrom theshuttleor duringspacecraft
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recoveryfroma safemodesituation).Theaccuracyof suchcomputedattitudeswasrestrictedat the

beginningof themissionby theuncertaintyin therelativealignmentsof theFHSTs,which were

knownonly to about5 arcminutes.An iterativealgorithmusingthelossfunctionof Equation2 is
usedby PASSto determinetherelativealignmentsof theFHSTs;thedetailsof thealgorithmare

presentedin Reference2. Becauseof therestrictionthatonly twoFHSTscanbeactivesimultane-

ously, aminimum of threesetsof data(onefor eachpair of trackers)is requiredto obtaina good

alignmentdeterminationfor thecompletetriad. Theuseof multipledatasetsfor eachtrackerpairis
the standardprocedure. Typically, from 5 to 10 fairly wei_i-distributed stars are found in each

tracker FOV during alignment CaliBration work. At 20 seconds per star, this implies an observing

period of approximately 3 minutes to map the star fields for each pair of trackers. Proper

alignment calibration therefore reqUires that the spacecraft gyroscopes have been sufficiently well

calibrated to hold the spacecraft steady (or correct ground calculations) to significantly better than

about 4 arcseconds per minute. Because the estimated prelaunch gyro bias uncertainty was

approximately this value, iteration between gyroscope calibration and FHST alignment calibration

at the beginning of the mission was required. Given the large number of star observations used in

the tracker alignment procedure, statistical reduction of errors yields alignment accuracies a few

times better than the 11-arcsecond accuracy level for a single observation. After alignment

calibration is completed, it is the accuracy of the individual FHSTs coupled with the geometry of

the tracker mountings, rather than the accuracy of the alignment determination, that sets a limit on

the accuracy of the spacecraft attitudes-that can be derived based On tracker data. Given N star

measurements in each of two trackers with a separation angle of ct between the trackers, the

derived attitude would have a one-sigma "roll" tincertainty of ~ { 11 / [ (2N) 1/2. sin(t_2) ] } arc-

seconds about the axis bisecting the chord connecting the trackers. Taking N ~ 5, this corre-

sponds to about 7 arcsec0nds for the HST trackers.

The second mode of operation, update mode, uses one star in each FHST in operation. These data

are used by the onboard computer to determine any adjustments to the spacecraft attitude required

to reposition to the scheduled attitude. In practice, such attitude corrections are essentially always

required after large vehicle maneuvers. The onboard algorithm for attitude error correction (details

of which may be found in Reference 6) incorporates a simplifying approximation; it effectively

assumes that the observed stars are near the FHST boresights. This approximation introduces an

error on the order of 13• [1 - cos(T) ], where 13is the true attitude error (i.e., deviation from desired
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attitude),and_,is angulardistanceof the observed star from the center of the tracker. HST is cur-

rently operated with a restriction of 300 arcseconds on the value of 13correctable by the onboard

computer, whereas _, is restricted by the size of the FHST FOV to be less than about 5 degrees.

This yields a maximum 13" [1 - cos(_') ] error of order 1 arcsecond. This is significantly smaller

than the 20-arcsecond (one-sigma) error level inherent in FHST data having just one star per

tracker (i.e., the onboard algorithm is effectively as accurate as a least-squares algorithm).

Although the update mode algorithm is, in principle, as accurate as a least-squares algorithm, sig-

nificant difficulties in the use of update mode were encountered in actual operations. During the

months immediately after launch, approximately 15 percent of scheduled FHST updates failed to

properly correct the spacecraft attitude. The result was usually an inability to acquire FGS guide

stars and a subsequent loss of scientific observations. Because of the criticality of successful

FHST updates, a special analysis team was organized to study the causes of FHST update failures

and to make recommendations for modifications to the ground and onboard algorithms so as to

reduce the update failure rate. Toa substantial extent, the difficulties with updates were found to

have arisen as a consequence of (1) limitations of the update mode operation of the tracker

hardware, (2) inexact specifications of FHST operating parameters, and (3) a few oversights in the

original software package used for selection of FHST update stars. Update mode requires each of

two FHSTs to find a preselected star in the FHST FOV. To this end, the FHST restricts its

scanning operation to a 1.5-degree-by-1.5-degree reduced FOV (RFOV), accepting only stars

brighter than a user-specified threshold. The center of the RFOV is not arbitrarily selectable, but

rather is restricted to be one of a set of grid points spaced such that the set of all RFOVs covers the

full FOV with overlap. Similarly, the star brightness threshold is not arbitrarily specifiable, but

rather is restricted to one of four FHST response values corresponding to approximately 3, 4, 5,

and 6 m v. (Strictly speaking, the last "threshold" corresponds to all detectable stars.) It is one of

the purposes of the PASS mission scheduling subsystem to select pairs of stars for FHST updates

that are isolatable within FHST RFOV and brightness boundaries. The details of the algorithm for

the selection of update pairs are beyond the scope of this paper; suffice it to say that the distribution

of stars in brightness and position about the celestial sphere makes the problem an extremely

nontrivial one. (Details may be found in Reference 2.) Careful tuning of input parameters is a

necessity. Among those items studied and (where appropriate) tuned by the FHST anomaly

analysis team are (1) the sensitivity response of each FHST as a function of FOV position, star
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brightness,andstarcolor, (2) theexactdimensionsof theFHSTs'RFOVs,(3) theprecisionof the
star brightnessthreshold limits, (4) referencestar parameters(e.g. variability or incorrectly

documentedmagnitude)for those stars usedin unsuccessfulupdates, (5) commandtiming

for FHST updateexecutions,(6)FHSTresponseerrordueto straylight (e.g.,sunlightreflected

from spacecraftcomponents),(7)FHSTplate scaleresponse,(8) thepossibility of enhancingan

FHST's star isolation capability by meansof an "error box" algorithm that will reject stars

observedto be toofar removedfrom thepreselectedposition,and(9) thepossibilityof enhancing

theprobabilityof successfullyupdatingthespacecraftattitudebyschedulingmultipleupdatesafter

major maneuvers. Modificationsto groundor onboardsystemshavebeen madewith respectto

items 1 through5; thesemodifications havealreadyreducedthe FHST updatefailure rate to

approximately4 percent.No significantcorrelationof updatefailureswith spacecraftattitudeor
orbit positionwerefound;this led tothedismissalof straylight (item6)asalikely causeof update

problems.Platesealeresponse(item7) hasbeenfound to benonnominalfor FHST-3; startingin
January1991,that _acker hasbeenminifying aiagularseparationsby about0.25 percent. The
causeof this anomalousscalebehaviorremainsunder investigation;correctingit will certainly

prevent the recurrenceof certain update difficulties that have recently beenencountered.

Recommendationsfor enhancementsto onboardandgroundsoftwarehavebeenmadewith respect

to items8 and9. Although improvementof systemperformanceis anticipateduponimplemen-

tationof eachitem,anexactdeterminationof thedegreeof improvement-- particularlywith respect
to item9 -- cannotbemadeat thistime.

VI. CALIBRATION AND USEOFTHE RATE GYROASSEMBLIES

HST's gyroscopesystemcomprisesthreeRGAs,eachof which consistsof two independently

operablegyroscopes.Thepurposeof theRGAsis twofold: (1) to allow thespacecraftto remainat

afairly constantattitudewhilenotusingstarsfor guidancecontroland(2) to allow thespacecraftto

performlarge-angleslewswith sufficientaccuracy.In this context,"sufficient accuracy"means

suchthatFH_;TUpdatesCanbeperformed_after slewsand therebyleavethe spacecraftwith an

attitudegoodto within 60arcseconds(three-sigma)of thatintended.The basic design properties

of the HST gyros are as follows. The mounting of the gyros is summarized via the matrix

equation
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where 03i represents a rotation about the i-th gyroscope, and f_j represents a rotation about space-

craft axis Vj. The design values for the angles cc and 13 are 31.7 degrees and 43.5 degrees,

respectively, _ being a characterization of the mounting of the gyro with its RGA and 13being a

characterization of the RGAs' mounting on HST. The gyros can operate in two modes. The high-

rate mode has a range of + 1800 degrees per hour with a resolution of 7.5 milliarcseconds per

40-hertz sample. The low-rate mode has a range of + 20 degrees per hour with a resolution of

0.125 milliarcsecond per 40-hertz sample. The three-sigma slew accuracy of the RGAs after

calibration is estimated to be - 1 arcsecond per degree. The relative alignments of the HST gyro-

scopes is such that any three may be used to completely sample rotations of the spacecraft. The

onboard control system is configured to use four gyros simultaneously, keeping the remaining two

as backups. The active configuration immediately after launch was the set consisting of gyros 3,

4, 5, and 6. In December 1990, 8 months after launch, gyro 6 failed and was replaced in the

control configuration by gyro 2. This configuration continues in use at the time of this writing.

The algorithm used within PASS for the calibration of an active gyro combination is presented in

References 1 and 7. The basic thrust of the algorithm is to compare the responses produced by the

gyros during a series of maneuvers with the known attitude changes across the maneuvers as

determined using data from the FHSTs before and after each maneuver. (In principle, asymmet-

rically improved RGA calibrations can be achieved using attitudes determined with both FHST and

FGS data. At present FGS data are not used.) If applied to a combination of three gyroscopes, the

calibration procedure can yield information on the scale factol _, alignment, and drift rate bias of the

individual gyros. The one-sigma accuracy of thehigh-rate mode scale factor calibration is about

20 arcseconds per 90-degree maneuver, with roughly equal contributions coming from FHST

attitude uncertainties and RGA nonlinearities. (The low-rate mode scale factors are not recalibrated
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on orbit, but ratherareassumedto be unchangedfrom their preflight values.) The alignment

calibrationis goodto about20arcseconds,andthedrift ratebiasto about5 arcsecondsperhour

for bothhigh-andlow-ratemode.Thedrift ratebias,for bothhigh-andlow-ratemodes,hasbeen

foundto vary atabout7 arcsecondsperhourperday. As a consequence,thelow-ratemodebiasis

recalibratedevery2 daysandthehigh-ratemodebiasevery7 days.

As indicatedearlier,anasymmetricimprovementin gyrocalibrationaccuracycan,in principle,be
achievedif FGSdataare includedalongwith the FHSTdata for attitudedetermination. This

follows becausethepitch/yaw accuracyof anattitudedeterminedusingFGSdatais very good,
restrictedessentiallyby theaccuracyof theground-basedcatalogcoordinates,whichcanbemade

goodto betterthananarcsecond.TheHST astrometryteammadea specialeffort to supply the
HST orbitalverificationplanningteamwith well-measuredcoordinatesfor starsin a setof 14posi-

tionsaroundthesky for usein thisgyro calibrationeffort. Ultimately, at leastasof this writing,
the extreme difficulty in schedulingsimultaneousFGS and FHST observationsaround the

occultation patternsdictated by the calibration slews,coupled with the significant temporal
variationof thedrift ratebias,hasledto adecisiontorestrictRGA calibrationeffortsto usingonly
FHST-derivedattitudes.

VH. CALIBRATION AND USEOFTHE FINEGUIDANCE SENSORS

Theheartof HST'spointingcontrolsystemisthesetof FGSsmanufacturedspecificallyfor useon

HSTby HughesDanburyOpticalSystems.TheFOVsof theFGSsarewithin theouterpartof the

full FOV of HST'sprimaryoptics. EachFGSFOV consistsof anarcwith anazimuthalrangeof

82 degreesand a radial rangeextendingfrom approximately10arcminutesto 14arcminutes
relativeto theprimaryopticalaxisof thetelescope.Figure2 illustratestheFOVsof theFGSsas

they look out to thecelestialSpherelThemagnituderangefor guidestarsusableby theFGSsis

approximately9 to 16mv. TheFGSsaredesignedto haveanaccuracyin determiningrelativestar

positionsof approximately3 milliarcsecondswhenfully calibrated(anaccuracynotyetachievedat

thetime of this writing). Theprecisionof the systemfollows from thedesignof anFGS asan

amplitudeinterferometerusingKoester'sprismscombinedwith photomultipliertubes.As with the
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Figure 2. Fine Guidance Sensor Fields-of-View
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FHSTs, an FGS can measure the position of only one star at a time. Each FGS has a 5-arcsecond-

by-5-arcsecond instantaneous field of view (IFOV) that can be commanded to a selected position

within the total FGS FOV. A star image falling within the inner 20 milliarcseconds of the IFOV

will produce a significant interferometric signal. The FGS is said to be in fine lock when so

measuring a star's direction. A second mode of FGS operation, coarse track mode, is also

available. In this mode the center of the IFOV is commanded to nutate about the true star position

in such a way that the edges of the IFOV cut across the image of the star in a symmetric pattern.

The estimated design accuracy of determining star positions using coarse track mode is

approximately 20 milliarcseconds. Because coarse track mode is less sensitive to spacecraft jitter

than is fine lock mode, particularly for faint stars, it is expected that coarse track will regularly be

used in observing situations in which extreme pointing precision is not required. Standard

pointing control procedure during scientific observations is to use two of the FGSs to maintain

guidance of the spacecraft, one for pitch/yaw stability and the other for roll stability. The

remaining FGS is available for precise astrometric observations. This short description of the

characteristics of the FGSs will suffice for the purposes of this paper. A more detailed description

of the design and operation of the FGSs is available in Reference 8; indepth descriptions may be

found in Reference 9.

The in-flight calibration of the FGSs consists of two major stages: external calibration and internal

calibration. External calibration pertains to the alignment of the FGS triad to the rest of the space-

craft, whereas internal calibration pertains to the nonalignment-related parameters of the individual

FGSs and the alignments of the individual FGSs relative to each other. External alignment is

performed by gathering simultaneous data for FHSTs and FGSs and thereafter minimizing the loss

function of Equation 2 while treating the FGSs as a single sensor. The most difficult aspect of the

alignment effort pertained to the identification of the first stars observed with the FGSs. This

initial alignment calibration of the FGS triad was done by pointing the telescope toward the open

star cluster NGC 3532, commanding the guide FGSs to locate one star each in their FOVs for

guidance, commanding the astrometry FGS to scan its FOV for as many stars as it could find

within a specified magnitude range in the time available, and then attempting to match the pattern of

stars found with stars in a reference catalog. Each FGS was used as the astrometry FGS three

times during the exercise, with each astrometry scan covering a region of approximately 14 square

arcminutes. In practice, this resulted in approximately six astrometry stars per scan. Practical
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difficultiesencounteredduringactualoperations(certainof themrelatedto theuncalibratedstateof

theFGSsat that time) led to modificationsin theobservingplansthat ultimately madethe star

identification procedureand subsequentalignmentcalibrationeffort more laboriousthanantic-

ipated. In particular, the lower limit on starbrightnesswasset to 14mv, which is significantly

fainterthanthelimit of thespecialNGC 3532catalogprovidedbytheHST astrometryteam. This

causeda certaindegreeof confusion anddifficulty in identifying the observedstar patterns.

Approximatelyhalf of theobservationswereultimatelyfoundin theoriginalcatalog.Thisallowed

apreliminarydeterminationof therelativealignmentsof theFGSsto theFHSTs-- preliminaryin

that mostof theguide starswere unidentifiedandthereforethevarious baselinesfor FGS star

separationswereoften no longer thanabout6 arcminutes. Theidentification of the subsetof

observedstars,togetherwith theFGSFOVcoordinatesfor thewholesetof observations,allowed

the HST astrometryteamto studyspecificregionson their NGC 3532photographicplate and

therebyprovidecatalogcoordinatesfor theremainingstars. This enhancementalloweda final
alignmentcalibrationof theFGStriad to theFHSTsusingFGSstarseparationsthat spannedthe
entire28-arcminute-diameterFOVof thetriad.

Theinternal calibrationof theFGSsis dividedinto two phases.Phase1is intendedto bringthe

calibrationof theFGSsystemto anaccuracycommensuratewith ground-basedastrometricobser-

vations. It doesso by using suchobservationsasreferencepoints. Phase2 goesbeyondthe
limitationsof ground-basedastrometricwork, thegoalbeingto achievethefull near-milliarcsecond

designcapabilitiesof the FGS system. This secondphasetakesHST beyondany previously

achievedgroundor spacecraftcalibrationaccuraciesandrequiresextraordinaryplanningfor both

calibrationprogrammingand dataacquisition. Thebasicgoalsof bothphasesof the on-orbit

internal calibration of theFGSsare the determinationof (1) the optical field angledistortion

(OFAD) function for eachFGS, (2) the magnificationfactor for eachFGS, (3) the systematic

offsetbetweenstarpositionsdeterminedin coarsetrackandthosedeterminedin fine lock for each

FGS,and(4) therelativealignmentsof theFGSs. Thedetailsof theFGScalibrationalgorithms,

particularlythosefor thephase2 OFADcalibration,areof suchcomplexityanddemandingof such

precisionthataspecialanalysisteamwasformedto analyzeanddevelopthealgorithmdetails. The

teamincludedrepresentativesfrom CSC,GSFC,HughesDanbury Optical Systems, Marshall

Space Flight Center, and the University of Texas Astronomy Department. CSC personnel concur-

rently conducted an extensive feasibility and verification study of the FGS calibration algorithms as
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part of their implementation. Thedetailsof the algorithmsasimplementedaredocumentedin
Reference2; theresultsof thestudyarepresentedin Reference10. An overviewof eachof the

algorithms is presentedbelow. The essentialresultsof the study are that, basedon certain

assumedsmoothnesspropertiesof theOFADfunctions,theimplementedalgorithmsarecapableof

determiningthecalibration parameterswell enoughto allow relative angulardeterminationsto

within a few milliarcsecondsacrosseachFGSFOV and betweenpairs of FGS FOVs. Inde-

pendently,theastrometryteamsattheUniversityof TexasandYaleUniversityhaveimplemented
versionsof HST FGScalibrationsoftwarefor their own astrometricstudies;thesearebeingused

for independentanalysisof theFGScalibrationdata.

Thealgorithmusedfor OFADcalibrationis aconstrainedtwo-dimensionalleast-squaresalgorithm

basedon theleast-squarestechniquepresentedin Reference11. Theessentialideais to minimizea

lossfunction,L, subjectto certainconstraintsappliedto theassociatedstatevector. Thelossfunc-
tioncanbeexpressed(slightlynonrigorously)as

where

L = E {[ Wij- D(Wij,S) - AjX i ]2 / oij2 } (4)

D(Wij,S)

S

Aj

Xi

_ij

= observation of star i in observation set j

= OFAD correction vector function

= OFAD correction function parameter set (to be solved for)

= attitude transformation matrix between attitude frame j and

a selected standard reference frame (to be solved for)

= "true" direction vector for star i in the standard reference frame

(after correction for velocity aberration effects)

measurement uncertainty for observation of star i in set j

(may include error associated with Xi)

and the summation is done over all stars and observation sets. For HST OFAD calibration, the

correction function D(Wij,S) has been parameterized as separate polynomials in the x and y

Cartesian projections of W. The set S is therefore a set of polynomial coefficients. The phase 1
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OFAD calibrationproceduresolvesfor a statevector {S,Aj (j= 1,n) }, where n is the number of

observation sets. The vector set {Xi} is provided as a priori knowledge from ground-based obser-

vations. The ground-based observations need be accurate only differentially; any systematic errors

in {Xi} will be absorbed in the matrices {Aj}. The selected constraints, applied to the set S, are

that the operator D should apply no net affine transformations to the vectors {Wij }. Specifically,

there should be no systematic shift in centroid location, rotation, or scale of {Wij }. (Optionally,

the constraints can be applied to an integration across the FGS FOV rather than the set of

observations.) This calibration can, in principle, be performed using a single set of data (i.e., with

each star observed only once). The phase 2 OFAD extends the phase 1 procedure so as to include

{X i} as part of the state vector, thereby eliminating any errors associated with ground observations

from the solution. Unlike the phase 1 calibration, that of phase 2 requires multiple observation sets

and significant variation of the spacecraft attitude. It is by moving the various target stars through

locally different distortion variation in the FGS FOV that the relative distortion across the entire

FOV becomes observable at FGS accuracy levels.

The algorithm used for magnification calibration is substantially simpler than that used for OFAD

calibration. Angular separations as imaged in the FGS detector space (hereafter "image space") are

magnified by a factor of approximately 57.2 over their true (or "object space") values. In a zeroth

order (i.e., small-angle) approximation, the magnification calibration could be performed simply

by computing the ratio of the measured image space angular separation of two sources to the object

space separation. The magnification, which works along radial arcs intersecting the optical axis,

produces a sufficiently large image space FOV as to invalidate any small-angle approach. The fol-

lowing algorithm is therefore used for FGS magnification calibration. Let (_i,Pi) be the image

space polar coordinates for the i-th star observed, Pi being the "radial" angular separation from the

optical axis, and _i being the azimuthal distance from an arbitrary reference direction. The object

space angular separation, ®ij, between two points with coordinates (_i,Pi) and (_j,pj) is given by

the spherical trigonometric relation (see Reference 12)

cos( Oij ) = sin( Pi / M ) sin( pj / M ) cos( _i- _j ) + cos( Pi / M ) cos( pj / M ) (5)
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whereM is the magnificationfactor. Givenan independentdetermination(e.g., from ground-

basedmeasurements)of thetrueangularseparation,0ij, andanestimate,Mij,n, for themagnifi-

cation,animprovedestimatefor themagnificationcanbeobtainedusingtherelations

I

|
|
|
B

_l

(Mij,n+l)-I = (Mij,n)-I . F( Mij,n ) / F'( Mij,n ) (6)

F( M ) = cos( ®ij ) " cos( 0ij ) (7)

where F'( M ) is the derivative of F( M ) with respect to M -1. This process can be repeated until

Mij -1 converges to an acceptable accuracy. The full iteration can be repeated for all observation

pairs within a given observation set. Finally, a weighted average over all such estimates of M "1

can be obtained using the equation

<M-l> = Z[Mij-l(0ij/_ij)2] / Z[(0ij/_ij)2] (8)

where (rij is the root-mean-square uncertainty associated with the i-j pair, and the sum is over all

observation pairs. The phase 1 magnification calibration can be performed using the same data set

as the phase 1 OFAD calibration, with the 0ij values being taken from ground-based observations.

The phase 2 calibration requires a more accurate determination of 0ij. The plan is to perform this

calibration using observations of an asteroid moving across the FGS FOV and to obtain the

required 0ij estimates using high-precision numerical calculations of the asteroid ephemeris.

Studies of asteroids suggest that variations of order 10 milliarcseconds in the separation of

center-of-light and center-of-mass may result due to asteroid tumbling. Center-of-light variations

will be compensated for by allowing 0ij to be modeled in the form

0i j = Oi1 _ 0j 1 (9)

0il = 0il(center-of-mass ) + a + e sin[ c0(ti-t 1) + _ ] (10)

where a, e, co, and ¢ are selected to give a best least-squares fit between ®il and 0il, and ti is the

time of the i-th observation. (The model neglects center-of-light variation perpendicular to the

direction of asteroid motion and asteroid motion curvature in the FOV.) Solutions for <M-l> and

{c_, e, co, _} are performed separately and iteratively.
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TheFGS-to-FGSalignmentalgorithmusesa two-partprocedure.Part 1establishesthe angular

separationsbetweenstarsfor everypairof starsin aselectedreferenceset. Duringphase1of FGS
calibrationtheseangularseparationsaredeterminedusingground-basedobservations.In contrast,

during phase2 theangularseparationsaredeterminedusinga singleFGS in astrometrymode

while thespacecraftis heldat aconstantattitude.With theseangularseparationsspecified,part2
usesthemto determinethe relative alignmentsof two FGSsby meansof an algorithm that is

essentiallyequivalentto theminimizationof Equation2. Althoughtherearenoapriori restrictions

asto whichFGSsmustbeinvolvedin thealignmentprocedurefor thephase1calibration,phase2
calibrationrequiresthat FGS-2beused. This follows becausethereferenceangularseparations

arerestrictedto beingnogreaterthanthemaximumviewableby a singleFGSat afixed attitude;

the minimum angularseparationbetweenFGS-1and FGS-3exceedthis restriction. Optimal

alignmentresultswill beachievedif theFGSusedfor thedeterminationof thereferenceangular

separationsduringpart 1 is positionedsoasto giveequalcoverageto thestarfieldsto beobserved

by thetwo FGSsduringpart2; i.e., thespacecraftshouldbereorientedbetweenparts1 and2 by
meansof a45-degreeroll abouttheVl-axis.

Thealgorithmsimplementedwithin PASSdonot solvefor thecoarse-track-to-fine-lock(CT/FL)

positionoffset. Thatsuchcalibrationwouldberequiredwasnot fully realizeduntil shortlybefore

HST'slaunch. Oneof thegoalsof theFGScalibrationteamhasbeento establishanappropriate

parameterizationfor the bias. Thedominantsourceof CT/FL offset is believedto be field stop
misalignmentwithin theFGSoptics,whichwouldshowitself predominantlyasasystematicoffset

throughouttheFOV. Variationof theCT/FL offsetasafunction of field position mayoccur,a
possiblecausebeingopticalvignettingneartheedgesof theFGSFOVs. Recentdatahasin fact

shownthat therearebothsystematicaswell asfield dependentcomponentsto theCT/FL offsets
for all threeFGSs.

To date,FGScalibrationeffortshavebeenessentiallyrestrictedto phase1calibrationefforts. A

catalogof ground-basedstarcoordinatesfor theopenclusterNGC5617hasbeenprovidedby the

Yale Universityastrometryteamfor thisphaseof calibration.Thedatareductionanalysisfor these
observations,whichweretakenusingtheMountStromlo26-inchrefractortelescope,aredescribed

in Reference13. Theestimatedone-sigmaaccuracyof thecatalogis 30milliarcseconds.Two sets
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of datahavebeentakenfor thepurposeof distortionandplatescalecalibration,thetimeperiods

beingthefinal weekof December1990andthefinal weekof May 1991. For eachset,HST was
commandedto makea seriesof astrometricobservationsof thetargetcluster. In what follows,

"frame"will referto thedatatakenin asingleorbit, duringwhicha singlepairof guidestarswere

usedin controllingthevehicle'sattitude.TheDecemberobservationsconsistedof five framesof

data for eachFGS, each frameconsistingof approximately17 stars. Eachframewastakenat
slightly adjustedtelescopepointings, theadjustmentsbeingmadeas+l-arcminute maneuvers in

pitch and yaw. The May observations consisted of a set of 7 frames of roughly 15 stars apiece per

FGS. Between frame adjustments by means of +l-arcminute pitch and yaw maneuvers were also

made, with the extra two frames being adjusted by means of +15-degree roll maneuvers. The

actual number of unique stars in each data set was approximately 25; however, not all stars in the

set were observed in every frame. The combined optical distortion and magnification one-sigma

residuals (i.e., the residuals between catalog star coordinates and FGS star coordinates after the

latter have been corrected for distortion and magnification) for the December data reduction were

found to be approximately 70 milliarcseconds. These errors were subsequently found to be best

explainable assystematic color- and magnitude-dependent distortion effects in the catalog data.

These systematic catalog errors have been corrected using the FGS data as a comparison. FGS

calibration work with the new catalog produces solutions with residuals of approximately 35 milli-

arcseconds. The calibration results demonstrated reasonable consistency between the true and

design coefficients characterizing the FGS distortion curves. In contrast, the calibration results

suggest strongly that the relative rotational offset between two optical elements in each of FGSs 2

and 3 differ significantly from their design values of zero. Specifically, for the benefit of readers

familiar with References 8 and 9, the relative offset between the star selector A and B

measurements has been found to be 0.57 degrees for FGS-2 and -0.63 degrees for FGS-3. These

values are significantly larger than the design uncertainty for the offset angles; possible reasons for

this discrepancy remain under investigation. The distortion and magnification calibrations were

repeated for each FGS using the data taken in May. The calibration results show significant

differences between the two calibration dates, particularaly with respect to magnification. The

magnification factor was found to increase for all three FGSs, the fractional increases being

1.2.10 -4, 7.5.10 -5, and 2.4.10 -5 for FGSs 1, 2, and 3, respectively. For FGS-1, this corresponds

to a 100 milliarcsecond Change in relative star separation for stars 14 arcminutes apart. A small

fraction of this change, about 13 milliarcseconds, may be accounted for as due to known

differences in the primary to secondary mirror spacing; the bulk of the change is unexplained.
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differencesin theprimaryto secondarymirror spacing;thebulk of thechangeis unexplained.

TheMaydatasetwasspecificallydesignedto allow for adeterminationof theCT/FLoffset. Each
starin theastrometricFGSwasobservedfor 30 secondsin coarsetrackprior to thetransitionto

fine lock mode. This providedapproximately100pointsdistributedthroughouteachFGSFOV

from which CT/FLoffset couldbedetermined. Analysisof thedataindicatesthattheoffset for

eachFGSis well representedby a linearmodel. Themagnitudeof theconstantcomponentof the

offset rangesbetween0.2 and 0.8 arcsecondsfor the threeFGSs,while the field dependent

componentintroducesoffsetchangesof approximately80milliarcsecondsacrossthe 18-arcminute

rangeof an individual FGS. The accuracyof the CT/FL offset correction is estimatedto be

approximately5 milliarcseconds,althoughsignificantandsystematicdeparturesfrom thefit were

observedfor certainindividual stars(i.e.,theoffsetcanbedependentonspecificstarproperties).

Dataspecifically for phase1 FGSrelativealignmentdeterminationwere alsotakenduring the

Decemberobservingperiod. Thedataconsistof 17 frames of observations, each frame consisting

of approximately 10 star observations in FGS-2 (used in astrometry mode) and one guide star in

each of the other FGSs. Because of operational difficulties (e.g., the then unresolved solar array

jitter problem), the data were taken with the guide FGSs (1 and 3) using coarse track mode. The

locations of the stars within the FGS FOVs were selected so as to provide complete coverage when

the data sets are combined. The data were processed, and corrections within each FGS for

distortion, magnification, and CT/FL offset were applied. Relative FGS-to-FGS alignment cali-

brations were then performed. The postcalibration one-sigma residuals for the difference between

measured and reference star separations between FGSs were found to be approximately 35 milli-

arcseconds, i.e., basically consistent with the estimated accuracy of the reference catalog. The

implied accuracy for the alignment calibration is about 10 milliarcseconds. In order to verify these

alignment calibrations, the May FGS 2 distortion data acquisitions were specifically designed with

guide star distributions appropriate for an FGS-to-FGS alignment determination. These alignment

results produced one-sigma residuals of approximately 54 milliarcseconds, with an implied

alignment accuracy of about 20 milliarcseconds. Unexpectedly, the alignment solutions for the

May data differed significantly from those for the December data, the differences being

approximately 200 milliarcseconds. A third FGS data set appropriate for alignment determination

was available from the end of January, 1991. These data also produced internally self-consistent

alignment solutions with one-sigma residuals of about 50 milliarcsecond and accuracy of about



20milliarcseconds.The January alignments are about 100 milliarcseconds different from either of

the other two. At this point we have no physical explanation for the variations in the alignment

solutions; the cause of the variability remains under investigation.

The two data sets. accumulated for each FGS for phase 1 OFAD/magnification analysis have

allowed a restricted amount of phase 2 OFAD processing. This admittedly very preliminary

analysis has resulted in OFAD solutions with one-sigma residuals on the order of 7 to 10 milliarc-

seconds. Comparison of these phase 2 solutions with the phase 1 results indicates that the phase 2

software package is more robust than originally expected, and that reasonably accurate results for

OFAD calibration can be obtained (at least for the central region of an FGS FOV) with as few as

five frames of data. The ultimate OFAD phase 2 analysis will require approximately five times as

much data for at least one of the FGSs. (Phase 1 OFAD processing can thereafter be applied to the

other two FGSs using reference data from their well-calibrated sibling, thereby achieving full

accuracy at a phase 2 level for all three FGSs.) Current plans place full phase 2 FGS calibrations

no earlier than the last 2 months of 1991.

VIII. OPTICS CALIBRATION AND SCIENTIFIC INSTRUMENT ALIGNMENT

Two major calibration activities closely related to the calibration of the attitude sensors are not

covered by this paper: the optics calibration and the calibration of the alignments of the apertures of

the Sis. The optics calibration consists of the measurements and analysis performed in connection

with the adjustment of the relative positions of the secondary and primary mirrors. It touches upon

the topic of this paper in that the performance of the FGSs and their effective alignments relative to

the other HST attitude sensors are functions of the relative configuration of the two mirrors.

Adjustments to the tilt or decenter of the secondary mirror therefore necessitate recalibrations of the

relative alignments of the other sensors to the FGSs. (In practice, only the FHST and RGA

alignment matrices need respecification.) It was within the context of performing an optical cali-

bration that representatives of Hughes Danbury Optical Systems (the mirror manufacturer)

discovered the spherical aberration of the primary mirror. Because the FGSs are afocal systems,

the manufacturer believes that the spherical aberration of HST's primary mirror will not

significantly degrade the accuracy of the FGSs.
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The aperturedirectionsof thevariousSis arelocatedinterior to the annulusof theFGS FOVs.

Operationally,theSIaperturealignmentsaremeasuredrelativeto areferenceframedefinedbythe

FGSs. The alignmentcalibrationfor anygivenSI is performedby takingsimultaneousmeasure-
mentswith theSIandat leasttwoof theFGSs,thencomparingthesemeasurementswith accurate

astrometriccoordinatesfor the observedstars. This procedureclearly placesa limit on the

accuracyobtainablefor thedeterminedSIaperturedirection;i.e.,thealignmentaccuracycanbeno

betterthanthecalibrationaccuracyof theFGSs. Becausethegroundsystemdoesnotcurrently

correctfor theCT/FL offset,theSIaperturealignmentaccuracyis thuscurrentlyrestrictedby the

operationalFGSaccuracyof about0.8arcsecondimposedbytheuncompensatedCT/FL offsetin

FGS 2. As the effective FGS accuracies improve, through both software upgrades to the

operational system and actual improvements in the FGS calibration, operational improvements in

the pointing of the Sis will result.

IX. SUMMARY

This paper has presented a review of the calibration algorithms and accuracies for the four principal

attitude determination sensing systems aboard HST. Table 1 summarizes the current and ultimately

expected accuracies for each of the calibration items discussed. Final calibration accuracy has

essentially been achieved for the MSS, the FHSTs, and the RGAs; significant progress has been

made in the calibration of the FGSs. Significant work continues with respect to tuning and

enhancing the FHST update capability. Regular recalibration of the RGA drift rate bias is required

because of its temporal variation. Periodic recalibration of the FHST and RGA alignments is

required because of redefinitions of the spacecraft reference frame that result from (1) improved

FGS calibration and (2) adjustments to the tilt or decenter of the secondary mirror. Significant

progress has been made in the calibration of the FGSs, accuracies on the order of 10 to 20 milli-

arcseconds seem obtainable for a data set localized in time. An unexplained variation of the FGS

magnifications and relative alignments, with effects on the order of a few hundred milliarcseconds,

has been observed; this variation remains under investigation. Plans are being made for the

acquisition of data designed for FGS calibrations accurate to the level of a few milliarcseconds.
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Table1.AttitudeSensorCalibrationAccuracies

Sensor Calibmti0n Item
Current Expected Typical

Accuracy Accuracy V_Iue Unit_

MSS Static bias - 0.004 - 0.004 ~ 0.02 Gauss

MTS coupling - 0.004 - 0.004 - 0.05 Gauss

FHST Distortion

Alignments

-11 -11

-4 -4

- 6O Arcseconds

Arcseconds

RGA A!ign__nt " - 30 - 30
(to FHSTs)

Scale factor ~ 0.4 ~ 0.4

(high-rate mode)

Drift rate bias - 5 ~ 5

Bias change rate
(high- and
low-rate modes)

- I0000

-4 -4 -7

Arcseconds

Arcseconds

per degree

Arcseconds

per hour

Arcseconds

per hour
per day

FGS Alignment - 10 - 10
(to FHSTs)

Distortion / - 0.010 ~ 0.003

(Magnification)

Alignment - 0.015 - 0.006
to FGSs

CT/FL offset ~ 0.010 - 0.010

Unexplained
Variation

-5

(57.2)

-0.5

~0.2

Arcseconds

Arcseconds

(unitless)

Arcseconds

Arcseconds

Arcseconds
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X. CALIBRATION TEAMSAND SUPPORTINGORGANIZATIONS

The following personsand organizationshave beenclosely involved with HST sensordata
analysisandcalibrationduring thefin'styearof theHST mission. TheMSS / FHST / RGA data

analysis team for the first few months of orbital verification consisted of John Boia c, William

Collier c, Martin Gakenheimer a, Edward Kimmer a, Matthew Nadelman c, Cherie Schultz c, and Gary

Welter (superscripts refer to organization affiliation; see list below). Responsibility for the periodic

recalibration of these sensors has been turned over to the PASS operations contractor -- primarily

Messrs. Gakenheimer and Kimmer, with most of the MSS calibration analysis being performed by

Sidney Broude a. Individuals participating in the analysis of FHST update anomalies included

Michael Brunofski a, W. Collier, Paul Davenport c, Larry Dunhamg, M. Gakenheimer, Theresa

Gastong, Kevin Grady d, Lou Hallock d, Joseph Hennessy d, Jeffery Karl c, E. Kimmer, Raymond

Kutina c, Robert McCutcheon c, M. Nadelman, William Ochs d, Thomas Pfarr c, Milton Phenneger c,

G. Welter, and Michael Wright d. NGC 3532 catalog star coordinates for the initial FGS alignment

calibration were provided by George Benedict k, Otto Franz f, Lawrence Fredrick 1, Darrell Story k,

and Lawrence Wasserman f. The FGS calibration team consists of Linda Abramowicz-Reed e,

William Brady e, Todd Burr e, Roger DoxseyJ, Terrence Girard m, Arun Guha b, L. Hallock,

William Jefferys k, E. Kimmer, Young-Wook Lee m, Bruce Lowenberg e, Olivia LupieCJ, William

Van Altena m, Qiangguo Wang k, G. Welter, and Robert Zarba e. Numerous other individuals from

many organizations provided extensive support for the activities described in this paper. These

organizations include

a. Allied Signal Aerospace Corporation

b. AKG, Incorporated

c. Computer Sciences Corporation

d. Goddard Space Flight Center

e. Hughes Danbury Optical Systems

f. Lowel Observatory

g. Jackson and Tull

h. Lockheed Missiles and Space Company

i. Marshall Space Flight Center

j. Space Telescope Science Institute

k. The University of Texas Astronomy

Department

1. The University of Virginia Astronomy

Department

m. Yale University Astronomy Department
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Manyotherindividualswereinvolvedwith activitiesin prelaunchpreparationfor thecalibrationof

the HST attitudesensors.Of particular notefor their supportin this areaarePaulDavenport,

whoseanalytic insightsprovidedthe basisfor, or extensionsof, manyof the algorithmsin the
PASSsystem;GeraldAbshirec,who coordinatedthesoftwaredevelopmenteffort for theoriginal

implementationof most of the PASS sensorcalibration algorithms;and Robert Coulteri, who

coordinatedthe intricate prelaunchschedulingof the early orbital verification activities. The

calibrationof HST will beanongoingeffort, with varying degreesof intensity, throughoutthe

lifetime of thetelescope.It is, andwill continueto be,aninterestingandstimulatingintellectual

challenge.

Thework reportedin this article wassupportedin part by NASA contractNAS-5-31500,which

enablesCSC to provide generalsystemsengineeringand analysissupport to NASA/GSFC,
includingspecificsupportfor theHST mission.
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ABSTRACT

An extended Kalman filter for real-time ground attitude

estimation of a gyro-less spinning spacecraft has been developed

and tested. The filter state vector includes the angular

momentum direction, phase angle, inertial nutation angle, and

inertial and body nutation rates. The filter solves for the

nutating three-axis attitude and accounts for effects due to

principle axes offset from the body axes. The attitude is

propagated using the kinematics of a rigid body symmetric about

the principle spin axis; disturbance torques are assumed to be

small. Filter updates consist only of the measured angles

between celestial objects (Sun, Earth, etc.) and the nominal spin

axis, and the times these angles were measured.

Both simulated data and real data from the Dynamics Explorer -A

(DE-A) spacecraft were used to test the filter; the results are

presented. Convergence was achieved rapidly from a wide range of

a priori state estimates, and sub-degree accuracy was attained.

Systematic errors affecting the solution accuracy are discussed,

as are the results of an attempt to solve for sensor measurement

angle biases in the state vector.
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i. INTRODUCTION

The Kalman filter presented here was developed as part of a

continuing effort in the Attitude Analysis Section (Code 554.1)

at NASA/Goddard to investigate the potential of sequential

filters for spacecraft ground attitude estimation. The filter

was developed primarily to provide accurate real-time attitude

determination for spinning spacecraft to complement the batch

estimators that have been used up until now. Use of this filter

or a successor is planned in support of upcoming spinning

spacecraft missions such as SAMPEX/FAST.

Kalman filtering has the potential for obtaining attitude

estimates of comparable, if not superior, accuracy to currently-

used batch methods, since, like batch methods, it can use large

numbers of measurements in its solution, while, unlike them, it

also models dynamic noise. Moreover, it has the potential for

doing this in real-time with minimal human operator involvement,

unlike batch methods. The falter presented here was coded and

run on a 286-class IBM PC clone, in part to demonstrate the

potential of personal computers for computation-intensive

attitude estimation.

A complete modeling of the dynamics of an asymmetrical,

rigid spacecraft could probably be incorporated into a Kalman

filter, using, for example, the equations given in Melvin (1989).

Due to their complexity, however, it is not obvious that these

equations could be propagated quickly enough for real-time

attitude estimation using a PC. To retain a high degree of

accuracy while ensuring real-time performance, the highly linear

dynamics model used by Markley, et.al. (1988), which models the

nutational motion of an axisymmetrical rigid body, has been used.

Measurement equations are developed which, given a sensor

complement of a single Sun sensor and a single Earth sensor,

permit the filter to solve for the nutating three-axis attitude

of a spinning spacecraft. A discussion of systematic errors

affecting the spin axis estimate is given last, and those errors

which may be compensated for or solved for in the filter are

noted.
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2. DYNAMICS MODEL

Spinning spacecraft are usually designed to spin about a

nominal spin axis, taken here as the body Z axis, Zb. The

deployment process usually imparts a nutational motion to the

spacecraft, however, which causes the nominal spin axis to move

on a elliptical cone about the spacecraft angular momentum vector

L at the inertial nutation rate w I. If the principle axis of the

spacecraft Zp is offset from Zb, it is Zp that nutates about L,

while Zb revolves on a circular cone about Zp at the body

nutation rate w b in a motion called "coning" (Wertz, p.489).

Since the angular measurements returned by the attitude sensors

are referenced to Zb, its motion must be modeled for accurate

attitude estimation. It should be noted that most spacecraft

have nutation dampers to reduce inertial nutation, but this

motion is present to some degree most of the time.

The attitude of the spacecraft, given as the attitude matrix

Api which transforms a vector in an inertial frame into the

spacecraft principle axis frame, may be represented as the

product:

Api(t) = Apl(t) Ali(t) (i)

where Ali(t) = A 2(_/2-6) A 3(_)

Apl(t) = A 3(@) A I(8) A 3(@)

and where Aj(F) represents a rotation F about the jth body axis

(Markley, et.al., (198_)). Matrix Ali , which transforms a vector

into an intermediate frame with the spacecraft angular momentum

vector along its Z axis, is introduced to separate the motions of

L and Zp. This is done since, for most spinning spacecraft, the

spin rate is chosen so that the integrated magnitude of all

disturbance torques acting on the spacecraft is negligible

compared to the magnitude of the angular momentum vector L. In

this case, the direction of L remains essentially constant, and

Ali is therefore constant as well; the spin axis attitude of the

spinning spacecraft is generally defined as the angular momentum

direction. Note that if the angular momentum direction were to

change rapidly, this motion could be modeled with a variation of

parameters approach (Kraige and Junkins (1976)).

Angles @, 8, and _ , which define the nutational motion of

the spacecraft about L, are given by complicated elliptic
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functions in time for the general case of a spacecraft with

unequal transverse principle moments of inertia (those

perpendicular to the spin axis) (Melvin (1989)). In the interest

of filter run-time performance, the filter presented here models

only the axisymmetrical case, in which the two transverse

principle moments of inertia are equal.

With the spacecraft assumed to be an axisymmetrical rigid

body experiencing negligible external torques, the attitude and

dynamics of the spacecraft may be described by the following

state vector equations (Markley, et.al. (1988)):

x = [ 6, e, @ , wI, Wp ]T (2)

= [ 0, 0, Wl, 0, Wp, 0, 0 IT (3)

where

_, 6 the right ascension and declination of the

angular momentum vector in geocentric inertial

(GCI) coordinates;

_,8,_ three 3-1-3 Euler angles specifying the attitude of

the nutating spacecraft with respect to the angular

momentum reference frame, where 8 is the constant

nutation angle and where # and _ are (for small

nutation angles) basically rotations about the spin

axis; the sum #+_ is approximately equal to the

"phase angle";

w I the inertial nutation rate at which Zp nutates

about the angular momentum vector L;

Wp = the body nutation rate at which Zb cones about Zp.

3. MEASUREMENT MODEL

This analysis assumes that all attitude measurements

received by the spacecraft are represented as the angle between

the nominal spacecraft spin axis, Zb, and a sensed reference

vector, V, known precisely in the inertial frame. The time of

this angular measurement is also used. While this model is a

simplification of measurements obtained by real sensors, it

388



captures the essential attitude information and permits the

results to be compared easily with other vector-based approaches,

such as that, for example, given by Schuster (1983).

For each angle/time pair received from a each sensor, three

measurements are calculated as follows:

where

zI = cos( n ) (4)

= 0. (5)z 2

z 3 = 2_ / (t 2 - tl). (6)

n = measured angle between V and Z b

t 2 = time of measurement

t I = time of previous measurement of V i by same sensor

The first measurement corresponds to the measured angle itself,

the second to the sine of a reference phase angle at the

measurement time, and the third to the total spin rate.

These actual measurements received from the sensors are

compared to three corresponding expected measurements calculated

by the filter from the propagated state estimate as follows:

hl = Vi ° Zb, i

= viT [Ail(a,6)] [Aip(_,8,_)] Sb,p

(7)

h 2 = V i o T i (8 )

= viT [Ail(a,6)] [Alp(_,8,# ) ] Tp

h 3 = w I + w b (9)

where

and

Tp = (Bp x Zb,p) / IBp x Zb,pl

Ail --

Alp --

Tp --

Bp --

Zb, p --

Zb, i --

Note:

the angular momentum-to-inertial attitude matrix

the principle-to-angular momentum attitude matrix

the measurement "trigger vector", principle frame

Sensor boresight vector, principle frame

the body Z axis Z b in the principle axes frame

the body Z axis Z b in the inertial frame

all the vectors above are of unit length.
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The difference h-z between the expected and actual

measurements is used to update the filter state and covariance.

Note that the measurement equations are non-linear in the state

parameters. Because of this, the notation and equations for the

extended Kalman filter have been used here.

4. KALMAN FILTER ALGORITHM

In this study, the standard extended Kalman filter equations

have been used, given as follows (Gelb, p.188):

State estimate and error covariance dynamic propagation:

x(t) = f(x(f),t)

P(t) = F(x(t),t)P(t) + P(t)FT(x(t),t) + Q(t)

(i0)

(11)

State estimate and error covariance measurement update:

Xk(+) = Xk(-) + K k [Zk-hk(-)] (12)

Pk (+) = [I'KkHk(-)] Pk (-) [I-KkHk(-)]T + KkRkKk T (13)

where

Kk = Pk(-)HkT(-) [ Hk(-)Pk(-)HkT(-) + Rk]-i (14)

For a complete development of the theory and meaning of these

equations, see the Gelb reference. The Joseph update in equation

(13) was found to be necessary for numerical stability, while

iterating the measurement update (Geib, p.190) was found useful

for converging large errors in the a priori estimate.

5. FILTER PERFORMANCE WITH SIMULATED DATA

A truth model was developed to provide realistic

measuremehts to the filter for a range of attitudes and dynamics

for testing purposes. The true spacecraft attitude and dynamics

were given by:

x = [ e, 6, @, 8, _ , Wl, Wp ]T (15)

= [ 0, 0, Wl, 0, Wp, 0, 0 ]T + U (16)
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basically the same model used in the filter, except with U, the

dynamic noise, added (Markley, et.al., (1988)). While this truth

model does not account for the effects of external torques and

does not model the dynamics of non-axisymmetrical spacecraft, it

does permit the testing of the filter without the interference of

modeling error.

A battery of filter runs were performed to test the

convergence of the filter from a variety of a priori state

estimates. For these tests, only the data from a single Sun

sensor and a single Earth sensor were used to update the state

estimate. The covariance results of these tests showed that

state parameters _, _, Wl, and Wp were in all cases highly

correlated, to the largest degree in the tests where the nutation

angle 8 was small. Because of this high correlation, the filter

was able to estimate the angles _ and _ to only within about 5 °

at best.

Because of measurements h 2 and h 3 on the phase angle and

spin rate, respectively, the filter was however able to estimate

the sums _+_ (the phase angle) and Wl+W p (the spin rate) quite

accurately. Since most spinning spacecraft may be supported

adequately without the need for knowing the phase angle, much

less the component angles _ and _, the above observability

problem would probably not be an operational concern as long as

the attitude would be solved for adequately. Indeed, despite the

5 ° error in # and #, the filter solves for the spin axis attitude

in terms of a and 6 to sub-degree accuracy in all the test cases

that were run.

An explanation for the observability problem noted above

follows. The phase angle _+_ and spin rate Wl+W p are estimated

quickly and accurately by measurements h 2 and h3, respectively.

The only information to distinguish between _ and @ and between

w I and Wp, however, comes from measurement hl, the cosine of the

angle between the body Z axis and the sensed reference vector.

The measured angle will oscillate sinusoidally with amplitude 8

and angular rate w I as the spacecraft principle Z axis rotates

about the angular momentum vector at the inertial nutation rate.

Also, the location of the angle on this sinusoidal curve permits

only two possibilities for angle _. For larger nutation angles 8

the filter can isolate both _ and Wl using the variation in hl,

allowing for a fairly accurate determination of _, _ , Wl, and Wp

when combined with measurements h 2 and h 3. For cases of small
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nutation angles or large measurement noise on hl, however, the

sinusoidal variation in h I becomes difficult to distinguish and

the uncertainty in @, _, Wl, and Wp becomes larger. In contrast

to a 5 ° best-case uncertainty in @ and _, the uncertainty may

grow to 30 ° or more for the smallest nutation angles.

Simulations have shown, however, that when the nutation angle

becomes small enough to cause large errors in @ and _, it is also

so small that it does not significantly affect the spin axis

determination either.

5.1 SAMPLE CONVERGENCE RESULTS

Figures 1 to 3 illustrate how the state estimate converges from

three different large a priori state errors. The true state is

compared to the Kalman filter estimate, and two error terms are

calculated. The spin axis error is approximated by:

SAE = [ d2(_) + d2(6) ].5 (17)

while the error in a "reduced state" with components @+_ and

Wl+Wp, instead of @, _, Wl, Wp, is given by:

(18)

RSE = [ d2(_) + d2(6) + d2(@+_) + d2(B) + d2(Wl+Wp) ].5

In these equations, d2( ) represents the square of the difference

between the estimated and actual values of the parameter in

parentheses.

The initial conditions for these runs are given in the

Appendix. Figure 1 shows that the filter almost immediately

solves for the spin axis to an uncertainty of only about 0.i °

from an a priori state with a 20 ° error. A more realistic

convergence scenario is illustrated in Fig. 2 for an a priori

estimate with errors on the order of 70 ° for @ and _, and on the

order of 20 ° for their sum. In practice, these angles should be

the most difficult state initialization parameters to calculate,

so these large errors are appropriate. Figure 2 shows that the

filter takes substantially longer to converge, but solves for the

spin axis to the same 0.I ° uncertainty level after about a

minute.

Figure 3 illustrates convergence from an a priori state with

errors on the order on 5 deg/sec for w and w and 2 deg/sec for
1 p

their sum. The filter has the most difficulty converging with
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large nutation rate errors, because they generate large errors in

and _, as well, during convergence. This difficulty is

reflected in Figure 3, which shows that the filter requires over

five minutes to converge to a 0.I ° spin axis attitude

uncertainty. The large value of the error in the reduced s_ate

is caused by the filter converging to a negative value of the

nutation angle 8; this result is perfectly acceptable, and serves

to illustrate that angle @ was driven 180 ° from its a priori

value due to the high a priori rate errors. It should be noted

that a priori rate errors as large as these should never have to

be input into the filter, since w I and Wp can be calculated

accurately beforehand, given the spin rate and moments of inertia

of the spacecraft (Wertz, p.490).
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5.2 ACCURACY RESULTS

The user of a Kalman filter is required to make an estimate

the magnitude of the dynamic and measurement noise affecting the

system and the data being filtered. The magnitude of this noise

is usually not known exactly, especially in the case of the

dynamic noise, and may not even be known to within an order of

magnitude. Since the magnitude estimate of these noise terms is

always in error to some degree, it is interesting to see how such

"mistuning" effects the filter results. The truth model enables

the actual error in the state estimate to be compared against the
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Kalman filter covariance, which indicates how well the filter

believes it is estimating the state.

Figures 4 through 8 plot as a function of time both the

actual spin axis error, approximated by equation (17) (the

difference between the true values and the KF estimates), and the

Kalman filter covariance corresponding to the same error. Figure

4 gives these results for a perfectly tuned filter, Figures 5

and 6 for assumed values for dynamic and measurement noise i0

times too high, respectively, and Figures 7 and 8 for those same

respective noises assumed to be I0 times to low. While the

actual and estimated errors do not agree exactly, even in the

perfectly tuned case, an overriding tendency can be noted: the

accuracy of the Kalman filter covariance seems to be much more

sensitive to the assumed measurement noise magnitude than to the

assumed dynamic noise magnitude. This is fortunate, since the

properties of the dynamic noise are usually known less well than

those of the measurement noise.

The parameters used the accuracy runs above are given in the

Appendix. In additional runs not shown here, for which the

dynamic noise and measurement noise were set to zero in both the

truth model and the Kalman filter, the actual and estimated

errors were both extremely low, as would be expected, since the

filter and truth model both use the same dynamics model.

5.3 FILTER SPEED

Besides achieving sub-degree accuracy, the Kalman filter for

the runs above was able to propagate and update in real time.

This was achieved by choosing an appropriate value for the

propagation step size; this step size could be set quite large

because of the linearity of the dynamics. Since the test cases

above were run assuming a spacecraft spin rate of about i0 rpm,

and since two measurements were assumed to be received each spin

period (a Sun angle and an Earth angle), the filter had to

process a measurement update every 3 seconds on the average to

operate in real time. The runs were executed on a 12 MHz 286-

class IBM PC clone. Use of a faster 386-class machine would

permit smaller dynamic propagation steps to be taken, or,

alternatively, a larger number of measurements to be processed

per spin period.
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6. PERFORMANCE WITH ACTUAL SPACECRAFT DATA

Attitude sensor data were obtained from the DE-A spacecraft

in order to test the potential of the Kalman filter for actual

spacecraft ground attitude determination. The author was unable

to obtain data for a period with significant nutational motion,

however, so the following results only validate the filter's

performance for the nutationally-damped case.

Data from a single Earth sensor and a single Sun sensor were

entered into the Kalman filter as input. Nadir angles had to be

calculated beforehand from the original DE-A Earth sensor data,

and precalculated biases were subtracted from the Sun angles

before they were input, as well.

TABLE 1 -- KF INPUT FOR DE-A DATA RUN

x O = ! 1.1968,-.17216, 0., 0.,-1.3209, -1.9568, .89226 ]T
Dynamic noise =

[.001, .005,.002,.005..002, .002]T
Measurement noise = [ 002, .01, .00_2 ]_

Zb, principle frame = [ 0., 0., 1. ]_

Uncert. in x o = [ .03, .03, 1.0, .005, 1.0, .001, .001 ]T

The filter input parameters for the run are given in Table

i. The estimated filter spin axis right ascension and

declination are plotted in Figures 9 and i0, with the batch

solution plotted as the straight line on the same plots. As

Table 2 shows, the difference between the Kalman filter and batch

spin axis directions is within the 0.21 degree uncertainty given

by both the Kalman filter and batch methods. The fact that the

Kalman filter and batch covariances agree so closely suggests

that level of dynamic noise, which the batch method does not

model, is of negligible significance in this data as compared

with the level of measurement noise.

TABLE 2 -- COMPARISON OF KF & BATCH SOLUTIONS

Spin Axis RA [deg]

Spin Axis Dec [deg]

Spin Axis Att [deg]

Att. Uncert. [deg]

Batch K__FF Difference

68.2610 68.35 +0.089

-9.4650 -9.54 -0.075

0.116

0.2178 0.21
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7. UNMODELED ERROR SOURCES

7.1 SPACECRAFT ASYMMETRY EFFECTS

The Kalman filter described above successfully solves for

the nutating 3-axis attitude of an axisymmetrical spinning

spacecraft. No spacecraft is truly axisymmetrical, however,

since the two principle moments of inertia perpendicular to the

spin axis are always unequal to some degree. The Kalman filter

estimate will therefore suffer from modeling error when real data

from a nutating spacecraft is filtered. The Kalman filter should

in this case try to model the elliptical path of Zp about L for

the real spacecraft with a circular path. The modeling error

would depend on the extent of the spacecraft asymmetry, and would

cause both an increase in the uncertainty of the spin axis

attitude uncertainty and a shift in the solved-for spin axis

direction (Wertz, p.541). This error source could be removed by

correctly modeling the dynamics of an asymmetric spacecraft,

perhaps with a state based on the dynamics model of Melvin

(1989).
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7.2 SENSOR BIASES AND MISALIGNMENTS

If not compensated for, sensor biases and misalignments can

cause large shifts in the solved-for spin axis direction. A bias

or misalignment that systematically changes the measured angle

between the spacecraft body Z axis and the reference vector may

cause a shift in the estimated spin axis direction: using the

analogy of the cone method attitude solution (Wertz, p.363) for

an Earth and Sun sensor, the spin axis direction, lying along the

intersection of the Sun and Earth cones, changes as the Sun and

Earth angles change from their true to their biased values. As

discussed below, attempts to solve for Sun and Earth angle biases

by adding them to the state vector were not successful. The

filter given above could easily compensate for precalculated

angle biases, however, by subtracting these biases from the

measured angles before using them in the update equations.

The relative misalignment of sensors in the plane

perpendicular to the body Z axis would change the timing of the

angular measurements, affecting the accuracy of the estimated

and @ angles, the w I and Wp nutation rates, and, to a much lesser

extent, the spin axis direction, as well.

7.3 Zp OFFSET FROM Zb

If the principle Z axis, Zp, of the spacecraft is offset

from the body Z axis, Zb, due to non-zero products of inertia Ixz

and Iyz, then Zb will "cone" about Zp at the body nutation rate

(see Wertz, p.490). This coning motzon will add a sinusoidally-

varying error to measurements taken at a rate other than the spin

rate (e.g., from a magnetometer), but will simply add a constant

bias to measurements taken at the spin rate (e.g., from a Sun or

Earth sensor) since the direction of Z b relative to Zp and the

sensed reference vector V is the same for subsequent

measurements.

This bias may result in a systematic error in the estimated

spin axis direction for filters that assume Zb and Zp are

collinear. The effects of the Zb/Z p offset may be removed in

this Kalman filter, however, simply by entering the value of Z b

in the spacecraft principle reference frame into the measurement

equations (7) and (8). Vector Zb in the principle frame may be

calculated from the mass moment of inertia matrix.
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8. SENSOR MISALIGNMENT ESTIMATION PROBLEM

An attempt was made to solve for the angular biases noted

above in the Kalman filter, in hopes of removing this major

source of spin axis attitude error. A Sun angle bias and an

Earth angle bias were added to the state and dynamics model, and

the measurement equations were modified to account for the bias

terms. The truth model then produced simulated angular

measurements shifted by specified Sun and Earth biases, and the

Kalman filter was applied to the data to solve for the specified

biases along with the attitude.

The filter was unable to solve for the applied biases,

however, due to high correlations between these biases and the

attitude parameters. In particular, the filter was unable to

differentiate between the angular biases and errors in the spin

axis direction. A covariance analysis was performed using the

Attitude Determination Error Analysis System (ADEAS) (Nicholson,

et.al. (1988)) to determine to what accuracy the biases could be

expected to be solved for. The ADEAS results suggested that for

normal noise levels the biases could not be determined in the

Kalman filter to a useful level of accuracy.

9. CONCLUSION

In this paper, a new Kalman filter has been presented that

solves for the nutating 3-axis attitude of a spinning spacecraft

in real-time on a 286-class IBM PC clone to an accuracy

comparable to or better than the batch methods currently used.

The filter has been tested both with simulated data and with real

data from the DE-A spacecraft. Although a modified version of

the filter was unsuccessful in solving for biases on the measured

angles, the filter could compensate for these errors if biases

calculated in some other way were to be input into the filter.

Similarly, the filter can remove errors due a Zp/Z b offset by

using the easily-calculated Zb, p vector as input.

Attitude errors due to unequal spacecraft transverse moments

of inertia cannot be compensated for in this filter. Further

work on removing this error source by properly modeling the

general motion of an asymmetrical rigid body would be valuable.
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APPENDIX

CONVERGENCE TEST PARAMETERS

Truth Model Input: ( x = [_,6,#,8,_,Wl,Wp]T )

x O = [ 1.222, -.349, I., .01, i., 1.925, -.8777 ]T

Dynamic noise =
[.00001, .00001, .005, .0002, .005, .003, .003] T

Measurement. noise = [ .002, .002, .002 ]T

Zb, principle frame = [ 0., 0., i. ]T

_ase Parameters for KF Runs:

x O = [ 1.172, -.399, .83, .0, .915, 1.915, -.8727 ]T

Dynamic noise =
[.000015, .000015, .0075, .0003, .0075, .0045, .0045 ]T

Measurement. noise = [ .003, .003, .003 ]T

Zb, principle frame = [ 0., 0., i. ]T

Uncert. in x o = [ .05, .05, .17, .02, .17, .01, .01 ]T

Run #i -- Large A Priori Spin Axis Attitude Error

x O = [ 1.469, -.596, .83, .0, .915, 1.915, -.8727 ]T

Uncert. in x o = [ .25, .25, .17, .02, .17, .01, .01 ]T

Run #2 -- Larqe A Priori # and _ Errors

x O = [ 1.172, -.399, -.2, 0., 2.6, 1.915, -.8727 ]T

Uncert. in x o = [ .05, .05, 1.5, .02, 1.5, .01, .01 ]T

Run _3 -- Larqe A Priori Nutation Rate Errors

x O = [ 1.172, -.399, .83, .0, .915, 1.82, -.8077 ]T

Uncert. in x o = [ .05, .05, .17, .02, .17, .2, .2 ]T

(Units: angles in radians, rates in radians/second)
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ACCURACY TEST PARAMETERS

Truth Model Input: ( x = [_,6,_,e,_,Wl,Wp]T )

x O = [ 1.222, -.349, i., .01, i., 1.925, -.8777 ]T

Dynamic noise = D =

[.00001, .00001, .005, .0002, .005, .003, .003] T

Measurement noise = M = [ .002, .002, .002 ]T

Zb, principle frame = [ 0., 0., i. ]T

Base Parameters for KF Runs:

X O = [ 1.172, -.399, .83, .0, .915, 1.915, -.8727 ]T

Zb, principle frame = [ 0., 0., i. ]T

Uncert. in X o = [ .05, .05, .17, .02, .17, .01, .01 ]T

Run #I -- Perfectly tuned KF

Dynamic noise = D

Measurement noise = M

Run #2 -- Assumed Measurement Noise 10x Too Large
Dynamic noise = D

Measurement noise = i0. x M

Run #3 -- Assumed Dynamic Noise 10x Too Larqe

Dynamic noise = I0. x D

Measurement noise = M

Run _4 -- Assumed Measurement Noise 10x Too Small

Dynamic noise = D

Measurement noise = .i0 x M

Run #5 -- Assumed Dynamic Noise 10x Too Small

Dynamic noise = .I0 x D

Measurement noise = M

(Units: angles in radians, rates in radians/second)
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Abstract

This work introduces, examines and compares several quaternion

normalization algorithms, which are shown to be an effective stage in the

application of the additive extended Kalman filter (EKF) to spacecraft attitude

determination, which is based on vector measurements. Two new normalization

schemes are introduced. They are compared with one another and with the known

brute force normalization scheme, and their efficiency is examined. Simulated

satellite data are used to demonstrate the performance of all three schemes. A

fourth scheme is suggested for future research.

Although the schemes were tested for spacecraft attitude determination, the

conclusions are general and hold for attitude determination of any three

dimensional body when based on vector measurements, and use an additive EKF for

estimation, and the quaternion for specifying the attitude.
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I. INTRODUCTION

Attitude determination of spacecraft usually utilizes vector measurements

such as Sun, center of Earth, star, and magnetic field direction to update the

quaternlon which determines the spacecraft orientation with respect to some

reference coordinates in the three dimensional space [1,2,3]. These measurements

are usually processed by an extended Kalman filter (EKF) which yields an

estimate of the attitude quaternlon [4-8].

Two EKF versions for quaternion estimation were presented in the

literature; namely, the multiplicatlve EKF [4-6] and the additive EKF [5,7,8].

In the multlpllcatlve EKF it is assumed that the error between the correct

quaternion and its a-prlori estimate is, by itself, a quaternlon that represents

the rotation necessary to bring the attitude which corresponds to the a-prlorl

estimate of the quaternlon into coincidence with the correct attitude. The EKF

basically estimates this quotient quaternion and then the updated quaternlon

estimate is obtained by the product of the a-prlori quaternlon estimate and the

estimate of the difference quaternion. In the additive EKF it is assumed that

the error between the a-priori quaternlon estimate and the correct one is an

algebraic difference between two four-tuple elements and thus the EKF is set to

estimate this difference. The updated quaternlon is then computed by adding the

estimate of the difference to the a-priori quaternlon estimate.

If the quaternion estimate converges to the correct quaternion, then,

naturally, the quaternlon estimate has unity norm. This fact was utilized in the

past to obtain superior filter performance by applying normalization to the

filter measurement update of the quaternlon [7]. It was observed for the

additive EKF that when the attitude changed very slowly between measurements,

normalization merely resulted in a faster convergence [7,8]; however, when the

attitude changed considerably between measurements, without filter tuning or

normalization, the quaternlon estimate diverged. However, when the quaternion

404



estimate was normalized, the estimate converged faster and to a lower error than

with tuning only.

In the next section we introduce the additive EKF for attitude

determination. The role of quaternion normalization in the additive EKF is

explained in Section Ill. In Section IV we discuss the brute force (BF)

normalization schemeand examine its performance. In the following sections we

introduce the quaternion pseudo-measurement (QPM), and the magnitude

pseudo-measurement(MPM). Test results of the application of all normalization

algorithms discussed in this work to simulated Earth Radiation Budget Satellite

(ERBS) data is presented in Section VII. In Section VIII we introduce the

linearized orthogonalized matrix (LOM)normalization schemeas a suggestion for

future investigation. Finally, the conclusions of this work are discussed in

Section IX.

II. THEADDITIVEEKFFORQUATERNIONESTIMATION

Attitude determination from vector observations using the additive EKF is

explained as follows. Suppose that a sequence [bm, i i=0,1,2 .... of vector

measurements performed in body, b, coordinates are given. Given are also these

vectors in the reference coordinate system r. Denote the latter vectors by [r,i

i=0, I,2 ..... The vector [bm, i is a column matrix whose elements are the

components of a vector v measured at time ti and coordinatized in the body

coordinate system. Similarly, the corresponding [r,i vector is a column matrix

whose elements are the components of the same vector v coordinatized in the

reference coordinate system. Our aim is to estimate the quaternion q which

expresses the body attitude with respect to the reference coordinate system. To

meet this end we define an effective measurement y as follows

^

yi = Zbm, i - A(q)Vr, i (2.1)
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where A is the direction cosine matrix (DCM) which transforms vectors from r to

^

b, and where q is the latest estimate of 9" The vector _bm, l which is a result

of a measurement, contains all the error associated with the instrumentation,

such as instrument misalignments, scale factor error, bias, white noise etc. The

vector v is taken from the almanac and is assumed to be perfectly known. We
-r,i

observe that when the measurement is error free and when the quaternion estimate

is accurate, [i is zero. On the other hand, when these assumptions do not hold,

then [i is a, generally non-linear, function of the instrument and attitude

errors.

The measured vector [bm, i can be expressed as follows

Vbm, i = Vb, i + (Be_ + -in') (2.2)

Vb, i

where v is the error-free value of Q when coordinatized in the b system, the
-b,l

Jacobian matrix

(2.3)

is the sensitivity matrix of the error associated with the measurement Vbm, i as

a function of the instrument errors, The latter are expressed as a sum of a

narrow spectrum error vector, 3e, and a wide spectrum error vector _i' which is

modeled as a white noise error vector. The vector e contains all the

instrumentation errors mentioned before, while 6e denotes the difference between

and its compensation value which is the latest estimate of e denoted by e.

Define _q as follows

_q = q - (2.4)

then

A(q) = A(q+$q) (2.5)

z

406



therefore, based on the assumption that 8q is small such that 4 is close enough
1 1

to q, A(q) can be approximated as follows

4 0A(q)

J=l 0qj
(_qj

^

q

(2.6)

consequently

A(_)Zr, i = A(g)Zr, i
4 0A(q_)]48q_j- Z 8qj

J=1

(2.7)

Define

Since

Gj = Gj(_) =

0A(_q)

Oqj 4
1

(2.8)

A(q) =

2 2 2+ 2
ql-q2-q3 q4

2(qlq2-q3q 4 )

2(qlq3+q2q4 }

2(qlq2+q3q4 )

2 2 2+ 2
-ql+q2-q3 q4

2(q2q3-qlq 4 )

2(qlq3-q2q 4)

2(q2q3+qlq4 )

2 2+ 2+ 4
-ql-q2 q3 q4

(2.9)

then

G1 =2

41 42 43

42 -41 44

43 -44 -41

(2.10a) G2 = 2

^ ^ -q
-q2 ql 4

41 42 43

44 43 -42

(2.10b)

G3=2

41

44

_2

41

_2

_3

(2.10c) G 4 = 2

^

q4

^

-q3

42

4 3

^

q4

-41

^

-q2

^

q2

^

q4

(2.10d)

Define
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hj = Gj_Vr, i (2.11)

and

then using (2.12), (2.7) can be written as

(2.12)

A(q)Vr, i = A(q)Vr, i - Hq, i__

Finally from (2.1), (2.2), (2.3) and (2.13) we obtain

yl = Vb, i + He, l_ + He, i_i - A(q)Vr,-- I + Hq, ia _

Since _Vb, i, A(q) and v are error-free, it is clear that- -r,i

(2.13)

(2.14)

Xb, i = A(q)Vr, i
(2.15)

therefore (2.14) can be written as

Zi = He, ia_ + Hq, ia_ + _
(2.16)

where

Note that

= %, i -i

(2.16) can be written as

(2.17)

.. .e (2. is)

The propagation of the vector [aqTIaeT]T_ (where T denotes the transpose) in

time can be expressed by the linear equation [8]

d

dt

aq_

ae

ap

aq

ae

ap

+ W (2.19)
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where _p contains additional states necessary to express (2.19) as a linear

equation driven by a white noise vector w. For compatibility with (2.19),

(2.18) is extended to include _p as follows

yi = [Hq, i[He, i[ 0 ] aq_

_e

8p

+ hi (2.20)

The set (2.19) and (2.20) can be written as

x = F x + w (2.21a)

(2.21b)

where Hl=[Hq, i]He, il0]. The latter equations can be used in an EKF to compute

-1'_" the estimate of _x at time t i.

Let xT=[qTleTlpT]__ _ then according to the EKF algorithm, _i(-), the a-priori

estimate of X at time t i is used to calculate H i which is needed to obtain the

a-posteriori estimate x.(+). The latter is then used to update the entire state
-1

estimate as follows

^ ^

-1_["(+) = Xi(-) + xi(+) (2.22)

Using (2.21a), _i(+) is propagated in time to become _i+l(-), the a-priori

entire state estimate at time ti+ 1. The dynamics matrix for the propagation of

X.(+) is denoted by A (see (2.23a). The covariance which is needed for computing
-1

the Kalman gain necessary for evaluating _i(+), is computed according to the

ordinary Kalman filter algorithm. To sum it up, the full EKF algorithm is as

follows

Between measurements

Solve from tI to ti+ I

= A[X(t),t]X (2.23a)

= A[X(t),t]P + P AT[x(t),t] + Q(t) (2.23b)
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with the initial conditions Xo=Xi(+), Po=Pl(+). The solutions at ti+ 1 are

denoted by Xi+l(-) and Pi+l(-) respectively. Q(t) is the spectral density matrix

[9] of w.

Across measurements

T [Hi+IPi+ 1Ki+ 1 = Pi+I(-)Ht+ 1 (-)HiT+I + RI+I] -1 (2.23c)

^

_Xi+l(+) = Kt+I__Yi+ 1 (2.23d)

_i+l(+) = _i+l (-) + _i+i(+) (2.23e)

(2.23f)

m

where Ri+ 1 is the covariance of nl+ 1.

Compensation

In computing (2.23a) and (2.23b) we need to use the gyro output vector w
1

which contains errors. Those errors are estimated as a part of p. Before each

time (2.23a, b) are used, the errors have to be appropriately compensated using

their estimate. Similarly, Vbm, i, which is used in (2.1) to obtain yi , contains

erros which constitute e. Before each time [i is computed (for use in (2.23d)),

the errors In v have to be compensated using their estimate.
-bm, i

III. THE ROLE OF QUATERNION NORMALIZATION

The state measurement update given in (2.23e) can be written in an explicit

form as follows:

A l_q(+) _(-)

e(+)I = _C-)

l -tic-)
• i+I

+

i+I

_$(+3

_(+)
1+1

(3.1)
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^

Unless convergence has been attained, qi+l(+) is not necessarily normal even if

_i+i (-) is. We know, however, that the quaternion which the algorithm is trying

^

to estimate is necessarily normal. We can then enforce normalization on qi+l(+)

with the hope that the enforcement of this quality of the correct quaternion

will direct the estimated quaternion in the right track and will enhance its

convergence. Indeed, it was found in the past [7,8] that normalization Is

helpful. In particular, it was found that when the attitude varies very slowly

between measurements, normalization, although not necessary, resulted in a

faster convergence; however, when the attitude changed rapidly between

measurements either filter tuning or normalization were necessary to avoid

divergence. The use of normalization is superior to tuning because, first,

tuning involves a tedious trial and error process, second, tuning is not a

robust solution, and third, with quaternion normalization the final attitude

estimate is closer to the correct quaternion.

Four normalization schemes are discussed next.

IV. BRUTE FORCE (BF) NORMALIZATION

The BE normalization is performed as follows [7]. After _i+1(+) has been

computed in C2.23e) the quaternlon part of the state Csee (3.1)) is normalized

as follows

__._+1(+) = __i+1(+)/ II <_i+1(+) II (4.1)

^_ (+), is used to re-form _i+l(+) as followsand then, the normal quaternion, 9i+1

^

_Xi+l(+) =

_*C+)

_C+)

_C+)
i+1

(4.2)
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This straightforward mode of normalization constitutes an outside interference

in the EKF algorithm which has to be accounted for in order to avoid filter

divergence. It was shown [7] that the normalization operation of (4.1) is

tantamount to the following computation of q_+l(+)

^, (+) = (_) + 8_i+1(+ ) - _i+i(-)qi+I(-)8_i+i(+) C4.3)qi+1 i+1 - -

Therefore, while the EKF algorithm presented in Section II assumes that the

a-priori quaternion estimate is updated according to (2.23e) as follows

_i+l(+) = qi+l (-) + 8_i+i(+)
(4.4)

in reality, due to the normalization, it is updated according to (4.3). The

difference is then in the term-qi+1(-)q_+lS_i+l(+).
Because of this residual

term, the full reset implied by (4.4) does not hold anymore. Therefore,

following the logic of the EKF algorithm, the residual term,

^ )^T 8 ^
-qi+1 (- qi+l q-i+l (+) has to be propagated in time. It was shown [7] that this

mode of normalization does not affect the covarlance computation of the EKF;

therefore, only the state computation has to be modified. In view of the

normalization operation of (4.1), the following changes have to be made in the

EKF algorithm presented in Section II. Between measurements, in addition to the

computation of _i+1(-) and Pi+l(-), compute also 8q̂i+l(-) as follows. Solve from

ti to ti+ 1 the differential equation

where F is the
q

I,I submatrix of F, with the initial condition

and denote the solution at ti+ I by 8_i+i(-). Then form

AT AT
Xi+l(_) = [Sqi+l(-),oT, oT] (4.6)

Z

and change (2.23d) to read
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_i+l(+) = _i+l (-) + Kl+l[Yl+I_ - Hi+l_i+I_ (-)] (4.7)

The BF normalization algorithm has all the expected advantages mentioned in

Section III; however, it is not elegant in the sense that the normalization

constitutes an outside interference in the EKF algorithm which has to be

compensated. This compensation adds a certain complication to the algorithm

presented in Section II. Therefore we propose the following QPM normalization

scheme.

V. QUATERNION PSEUDO-MEASUREMENT (QPM) NORMALIZATION

^

According to this algorithm the updated quaternlon qi+l(+) is used to form

a pseudo-measurement as follows

Xn, i+ 1 = _i+I(+)/ II _i+i (+) II (5.1)

It is then assumed that the quaternlon is measured by an imaginary device, say

"quaternion-meter", and the output of this device is [n,l+l plus a small white

measurement error. Following this rationale a measurement update is performed

which is based on the quaternion measurement. To accomplish that we realize from

(3.1) that In, i+1 is related to the state vector as follows

Xn, i+l = H + n (5.2)n,i+l_i+l n,i+l

where

T
_Xi+ I = [qT[eT[pT]i+l (5.3)

H
n, i+I

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 (5.4]

and R the covariance of n is the diagonal matrix
n,i+l' -n,l+l'
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Rn, i+ 1 = diag[r 2,r2,r 2,r 2] (5.5)

and where r is a small number. The a-priori state estimate for this measurement

^

update is, of course, Xi+l(+). Note that the output of this update is the full

state vector and not Just the estimate of, x, the difference between _i+l and

^

its estimate Xi+l(+). This pseudo-measurement update is performed after the

computation in (2.23f) has been carried out. The pseudo-measurement update

algorithm is as follows. K is computed according to (2.23c) where Hi+ 1 andn,i+l

Pi+l (-) and Ri+ 1 are replaced by Hn, i+ 1, Pi+l(+} and Rn, i+ 1 respectively. The

state update is then re-computed as follows

X. (+) = ^ (+) + K [Yn, - H ^ (+)]-1+1 _i+l n,i+l - i+l n,i+l_i+l
(5.6)

and Pi+l(+) is re-computed according to (2.23f) where Ki+l, Hi+ 1 and PI+I (-) are

replaced by Kn, i+l, Hn, i+ 1 and Pi+l(+) respectively. The new estimate and its

covariance are then propagated in time as before.

The QPM normalization performs quite well and achieves the expected

benefits of quaternion normalization provided r is well tuned. If this is not

the case, the attitude estimate may reach a wrong value, and if the attitude

changes between vector measurements, it may even diverge. The reason for this is

described next.

For the normalization to be effective one is tempted to choose a small r in

which case the filter practically replaces the stored quaternion estimate by the

normalized quaternion. However, the small "measurement noise", P, reduces the

variance of the quaternion estimation error considerably. Therefore, the filter

assigns a very high credibility to the normalized quaternion estimate even

though it is not yet the correct quaternion. Consequently, the filter does not

allow new vector measurements to alter the quaternion estimate and the latter is

stuck on a wrong value. If the quaternion changes now due to attitude change

Z
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then the quaternion estimate diverges. In order to avoid this phenomenon one has

to tune the value of r which constitutes an additional design burden. Therefore

although, unlike the BF normalization, the QPM normalization blends naturally

into the EKF algorithm, the required tuning constitutes a considerable

disadvantage. To alleviate this problem we proposed the following magnitude

pseudo-measurement normalization scheme.

VI. MAGNITUDE PSEUDO-MEASUREMENT (MPM) NORMALIZATION

Unlike the previous scheme, where we assumed that we "measured" the

normalized quaternion, here we assume that we "measure" the square of the

quaternlon Euclidean norm whose magnitude is assumed to be I. This imaginary

"norm meter" yields the reading z where

z = 1 + v (6.1)
n,i+l n,i+1

and where v is assumed to be a white measurement noise whose variance is r.
n,i+l

Note that the "measured" quantity is a non-linear function of the quaternion

components; therefore, we compute the effective measurement, Yn, i+l' as

1,i+1 + qC+) ,i+l + qC+) ,i+l + q(+)4, i+l

Using (6.1) and (2.4), (6.2) can be written as

= 1 - ,. ,i+l-3qj, + Vn, i+l (6.3)Yn, i+l

j=l

Neglecting products of _qj,n+l' (6.3) can be written as

Yn, i+l = 1 - - 2 i+lSqj + v, , n, i+l

j=l j=l

(6.4)

and since
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then (6.4) can be written as

Yn, i+l = [2q1,i+112q2,1+1

4
2

Z qj, l+l

j=l

= 1

12q3, I+1 12q4, i+1] _q1,1+1

_q2, i+l

_q3, i+1

6q4, i+1

(6.5)

+ (6.6)
Vn, i+l

Since qj, i+l J=1,2,3,4 is unknown, we follow the common practice of replacing

the quaternlon components by their estimate, thus

Yn, i+1 = [2q(+) 1, i+1 12q(+)2, 1+1 12q(+)3, i+112q(+)4, 1+1] _qi,1+1

_q2, i+1

6q3, i+1

_q4, i+l

+ v
n, i+1

(6.7)

The latter is the measurement equation which Is used to perform a magnitude

pseudo-measurement normalization update. The sequence of operations is similar

to that performed when the QPM normalization update is carried out (see the

preceding section). The only difference ls that now

4

Yn, i+l = 1 - Z (_(+)2j, 1+1 (6.8)

j=1

and

Rn, i+ 1 = r (6.10)

We realize that the fact that r is very small does not imply that the
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measurement of q is precise. It only implies that the measurement of l[ q [[ is

precise. Therefore, now the variances of the quaternlon states do not increase

to a value close to r and thus the estimates of the quaternlon components do not

cling to wrong values and stay there like they do when the preceding QPM

normalization is applied with a small r.

VII. TEST RESULTS

The algorithms presented in this paper were and still are being tested now.

In these tests the EKF is applied to simulated as well as to real Earth

Radiation Budget Satellite (ERBS) data. Partial results are presented as

follows.

Quaternion normalization speeds up the convergence of the additive EKF when

used to estimate spacecraft attitude from vector measurements. Moreover, if the

attitude changes considerably between vector measurements, quaternlon

normalization replaces filter tuning which is necessary to avoid divergence. In

the latter case, quaternion normalization also reduces the final attitude

estimation error.

In Table 7.1 we see the final attitude estimation error when the EKF is

applied to simulated ERBS data. The initial attitude error is 30 ° and the value

-5
of r used in the QPM and MPM algorithms is I0

-5
Table 7.1: Final Attitude Error in Degrees at I00 sec, r=10

Yaw

Roll

Pitch

Normalization Algorithm

Without
BP QPM MPM

Normalization

.0048

.0022

.0170

.0074

-.0002

.0060

.0057

.0019

-.0009

.0069

.0039

-.0033

RMS 0.0178 0.0095 0.0061 0.0086
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Note that the BF algorithm implies no measurement update therefore no r is used

in this run. We turn to Table 7.2 to see the advantage of the MPM over the QPM

algorithm. We realize that while for r=10 -5 both algorithms exhibit identical

-11
accuracy, the QPM algorithm fails when r=10 The reason for this difference

was mentioned at the end of Section V.

-11
Table 7.2: Final Attitude Error in Degrees at 100 sec, r=lO

Yaw

Roll

Pitch

Normalization Algorithm

MPMOPM

3.2387

10. 3660

-0. 7451

.0045

.0083

.0127

VIII. SUGGESTED FUTURE RESEARCH

Although the MPM normalization performed satisfactorily we suggest to

investigate an algorithm of implied normalization which does not really use

normalization. This algorithm is presented next.

In Section II we presented the development of the additive EKF for

quaternion estimation. In that development we derived the linearized

relationship between the vector measurement error and the quaternion estimation

error which are summarized in (2.16}. To meet this end we differentiated the

matrix A(q) given in (2.9). The differentials were partial differentials with

respect to the elements of q. As a result of the differentiations we obtained

the matrices Gj_ J=1,2,3,4 which are listed in (2.10).

When q is indeed of unit length, A(q) is an orthonormal matrix; that is,

its columns (rows) are orthogonal to one another and are of unit length. If,

however, q is not of unit length, then the columns (rows) of A(q) are still

orthogonal to one another, but their length is not a unit anymore. It was proven
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in [I0] that the matrix A"(_) computed as follows

A'C_) - I A(_)
- II _ II 2 -

is.i)

is not only orthonormal, but it is also the "closest" orthonormal matrix to

A(q); that is, of all possible orthonormal matrices, the distance between A'(q)

and A(q) is the smallest where, by distance we mean the Euclidean norm of the

difference matrix A*(q)-A(q). It can be argued that if we use A*(_) rather than

A(_), we practically enforce normalization. This is so because normalizing

first and then using the normalized quaternion to compute A(_} is identical to

the computation of A'(_} as given in (8. I), The partial differentiation of (8. i}

with respect to the quaternion components yields

aA_{q) Irj = rj(_) - - =
- aqj

^

2qj A(q) +

II_ II4 -
1 Gj(q)

II_ IIz -
(s.2)

L =

where Gj(_) is given in {2.10). The final algorithm is as given in Section II

with Fj replacing Gj in (2.11). We call this normalization scheme the linearlzed

orthogonalized matrix (LOM) algorithm.

Finally, in the future we intend to apply all the normalization schemes

discussed here to real ERBS data.

IX. CONCLUSIONS

It was found again that quaternion normalization in the additive EKF for

attitude determination from vector measurement has the following advantages. If

the attitude changes slowly, normalization speeds up estimation convergence. If

attitude changes rapidly between measurements and no normalization is applied

then filter tuning has to be used in order to avoid divergence. However, if

normalization is applied, convergence is achieved without filter tuning.

Moreover, the final attitude estimation error is smaller. There is then a clear
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advantage to quaternion normalization. Three quaternion normalization algorithms

were tested. The conclusions with regard to the use of each one of them is

listed next.

• The brute force (BF) normalization algorithm works well and exhibits the

normalization benefits described before.

• The quaternion pseudo-measurement (QPM) algorithm performs well only after

tuning.

• The magnitude pseudo-measurement (MPM) algorithm performs well and needs no

tuning.

Finally, we suggest the investigation of the linearized orthogonal matrix

(LOM) normalization whose development was presented in Section VII. All the

normalization schemes will be tested on real ERBS data.
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Abstract

This paper investigates the effects of colored noise on the accuracy of b_h least squatm _ eatimatm
with applications to attitude determination cases. The standard approaches used for estimating the accuracy
of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight
experience measurement noise often contains significant time correlations and thus is "colored." For
example, horizon scanner measurements from low Earth orbit have been observed to show correlations over
many minutes in response to large scale atmospheric phenomena.

A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the
resulting equations provides insight into the effects of any particular noise color and the worst cage noise
coloring for any particular parameter estimate. It is shown that for certain cues, the effects of relatively
short term correlations can be accotmnodated by a simple correction factor. The errors in the predicted
accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do
not take into account the noise color characteristics are discussed. The appearance of a variety of sample
noise color characteristics are demonstrated through simulation, and their effects are discussed for rumple
estimation cases. B_ on the analysis, options for dealing with the effects of colored noise ate di_-ttssed.

1. INTRODUCTION

A requirement for flight dynamics support is the estimation of the accuracy of attitude and orbit solutions, and this

requires a knowledge of the measurement noise characteristics. Often, the measurement errors ate assumed to be
independent and identically distributed, what engineers commonly call "white" noise. One reason this assumption

is made is simply that noise of this nature is easy to handle in estimation algorithms. However, this is not always

a correct assumption for real spacecraft data. This paper investigates the implications of that assumption,

discusses a formulation for calculating the true parameter uncertainty when the noise is not white, and shows how

to interpret the effects of various noise colors in some representative cases.

"Colored" noise refers to any noise that is not white, i.e., that has correlations related to the time between

measurements of the same type. "Batch" refers to the computation of fixed parameters using data over a given

time span in a single solution.

1.1 COLORED NOISE IN $PACECRAFF DATA

Spacecraft horizon scanner data provides a clear example of measurement noise that is obviously non-white, and

for which an explanation for long term correlations of various frequencies is apparent. Figure 1 shows a sample

scanner data from Seasat and Landsat. In the Seasat mission, the bumps in the data were directly correlated with

the infrared scanner "seeing" a high altitude cloud in the threshold adjust region of the horizon detection logic

(Reference 1). Thus large scale atmospheric phenomena contributed a low-frequency "noise" to the scanner

measurements. In the Landsat mission, the "bumps" could not be correlated with specific cloud features; however
long term correlations are clearly present (note that the highest frequency component of the Landsat data noise

was filtered by 128 point averaging for data volume reduction; the remaining noise variations clearly have longer

correlations than white noise.) For Landsat some of the very long term variability was associated with seasonal

1. This work wu suppotle# by the NASA Smell Bu$inea_ Innovation Resew'ch fSBIR) progrlm't
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(I) SEASAT DATA

SAMPLE ORBIT

(b) LANDSAT DATA

SAMPLE ORBIT

Figure 1. Sample Horizon Scanner Data from Seesat and Llmdsat

random stratospheric temperature variations (Reference 2). Ever since horizon scanners have first been built,

manufacturers have worked to make them less sensitive to clouds in the lower atmosphere and to trigger on the

more stable stratosphere, but yet it seems natural that this sensor may remain sensitive to large scale "weather"

phenomena to some extent and thus have long term correlations in the data.

Other sources of long term correlations in sensor measurements can include any modelilg uncertainties such as

sensitivities to stray light, magnetic field changes (external or internally generated), or temperature variations.

Certainly the line between noise and systematic errors can become blurred, but the low frequency noise model for

some types of possible modeling errors can be useful. Another source of effective low frequency noise can be

spacecrat_ dynamics modeling uncertainties or the effects of tyro noise. However, the similarity of the effects of

these noise types with low frequency measurement noise will not be developed in this paper.

1.2 BRIEF LITERATURE REVIEW

The equations for treating colored noise in batch least squares estimation have long been known and are given in

numerous textbooks. It is a matter of applying an optimal data weighting based on the expected correlations.

However, as a practical matter, many actual estimation systems simply assume white noise. Although every

relevant text reviews the optimal, maximum likelihood weighting, and the simplification with the white noise

assumption, there is surprisingly little discussion of the impact of this simplifying assumption and what it can mean

in practical batch estimation problems. Furthermore, there is a relatively simple formula for computing the

accuracy of an estimator that assumes white noise while actual correlations are present. This formula does not

seem to be noted, let alone its relevance emphasized, in most texts on estimation. The general form of this

equation, giving the errors due to a difference between any assumed and actual noise covariance, is given in the

mathematics for the general model for attitude determination error analysis developed at GSFC (Reference 3).

However, in the current system implementation based on this analysis, only white noise assumptions are allowed

(Reference 4). References 5 and 6 both mention this formula and discuss the implications briefly by an example. It

is likely that more attention to this problem may be contained in the broad literature on estimation in various fields,

but its consideration (particularly for flight dynamics applications) seems to be very infrequent.

There is notable available literature on handling colored noise in Kalman filter applications. Problems in handling

colored noise in continuous time filters were first presented and resolved by Bryson and Johansen in 1965
(Reference 7), and further developments were provided and a few practical applications were discussed in papers
that followed (References 8 through 12). Sections on handling "colored noise" in Kalman filters are found in

books on estimation (e.g., References 5, and 13 through 15) published in the early 70's. These references give

prescriptions for optimally filtering the data given colored noise. However, these references do not generally
address a sensitivity analysis to the "suboptimal" white noise assumption in covariance analysis, which is the

problem discussed in this paper in the batch estimation case.
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Estimation and the spectral analysis of data in general is a field with a long history, wide application, and

° considerable development. Today, voluminous literature on spectral analysis and estimation is found in

communications engineering, statistical time series analysis, time standards stability, and speech data processing,

amongotherfields. Althougheffort was madeto locate relevant refm'_, an exhaustive survey is by no means
claimed.

MATHEMATICAL DEVELOPMENT

OPTIMAL WEIGHTED LEAST SQUARES

We assume a linearized model of our meamurements, z,

z=Hx+¢
(I)

where H is the matrix of partials of the measurements with respect to the state parameters, x is the state vector of

parameters, and e is the vector of measurement errors. Basic weighted batch least squares provides an estimate of

the stateparameters,i,
Hthl.i HTx =( )-I lez

0

This estimate is optimal if the weight matrix is the inverse of the measurement noise covariance matrix

W=R "1

(2)

(3)

where R is the expected noise covariatge

R=E [cc v] (4)

The accuracy of an estimate is given by the state covarianc¢ matrix

p = (HT_I.I) "I (5)
O

These equations are the maximum likelihood estimate, or best lines," unbiased estimate, and they are equivalent to

the Bayesian estimate if no a priori uncertainty information is available.

2.2 WHITE NOISE/UNWEIGIITED LEAST SQUARES

If we know that our measureme_ are independent and uncorrelated, then R is a diagonal matrix. If we make the

additional assumption that all the measurements have the same variance, then we may write R as a scalar times the

identity matrix, I.

R = o.z I

and

In this case the estimator(2) simplifies to

1
W=_I

2
O"

(6)

(7)

TH) Htx • (H -I z (s)

and the covariance of our estimate is given by

P
tt

• o.z (HI"H) "I O)
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This simplification is commonly made in many systems, including those for attitude determination. Two reasons

often given are" (I) A priori measurement statistics may not be available, and it is often just assumed that

independence of the measurements is a good model, and (2) It is also sometimes observed that optimal weighting

requires computing the inverse of the measurement noise covariance, and this may not be practical when handling

large amounts of data. This is an additional motivation for assuming equal weighting is good enough. (It is not

widely noted that one basic colored noise model does have an exact form for its inverse - see Equation 23.)

It is the purpose of this paper to investigate the impact of this simplification on the expected covariance of our

estimate. This can be particularly important for prelaunch studies when we want to predict how well our estimator

will perform. It also can be of importance for postlaunch analysis if we want to use the estimators predicted
covariance as an indicator of the actual attitude accuracy.

2.3 UNWEIGHTED ESTIMATOR WITH COLORED NOISE

The expected variance of the unweighted least squares estimator in the presence of correlated measurements may be
derived directly by taking the expected covariance of estimator (8) assuming noise covariance R.

Ps " (HTH)'I HT R H (HTH) "1 (lO)

Thus if we have a model for the actual noise covariance, R, we can directly compute the error of our unweighted

estimator. This is the main formula used to derive results presented in this paper. As observed in the literature

review, it is remarkable how seldom this equation is noted.

As we shall see, interpreting results from this formula requires some careful attention. Note that there are as many

terms in the noise covariance as there ate points being fit in the least squares estimation. This gives a tremendous

amount of power in terms of possible assumptions about our noise model. For example, this formula can be used
to evaluate the effects of random biases as well as noise in the traditional sense.

In the terminology often used in error analysis, the unweighted least squares is considered a suboptimal estimator in

the context that actual correlations are present in the noise (and hence the choice of subscript). Note however that

we are not primarily concerned here with the actual performance of this suboptimal estimator relative to the optimal

one, although we will make observations about this difference (P - P,). Instead we will be concerned mainly about

the erroneous prediction of the suboptimal estimator accuracy assuming white noise relative to its actual accuracy

given colored noise (Po - P). As we shall see, this suboptimal estimator does not generally do badly relative to the

optimal one, but the prediction of its accuracy erroneously assuming white noise can be quite unrealistic.

It is noted that a more general equation for error analysis can be obtained by taking the expected covariance for the

weighted least squares estimator when the true noise covariance is different than the expected noise covariance. We
will not, however, 1_ _t that more general problem here.

2.4 CORRECTION FACTOR INTERPRETATION

A very interesting and elegant interpretation can be made of the correction factor between white noise predicted

accuracy and accuracy in colored noise. We take Equation (10) and break it into two parts, one giving the white

noise predicted covariance, P,, and a correction matrix C, so that
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For simplicity, consider esdnmting a single parameter from a single time series of correlated measurements. Let

q2be the true variance of the measurements and g(k) be the autocorrelation as where k gives the sample lag. P is

normalized so Po - I, andP(k) =P(-k) due to the properties of the autocorrelation function (see Section 3 for
more discussion of noise properties). Tne measurement noise covariance is

1 Pl P

Pl 1

(12)
"Pl

P. Pl 1

and the partials matrix H is now a vector which we shall call h and refer to as our "basis vector" since it is the

function we are fitting in a least squares sense. Thus our scalar correction factor is

h T R h (hth) "1 (13)
C " 0"2

N'I

Written out as a summation, we caa write

jmo

In this form, the inner sum in the numerator may be recognized as the convolution of the basis vector with its

reflection, or equivalently as the autocovariance function for the basis vector. The sum shown in the denominator

normalizes the basis vector autocovariance to unity at zero lag, and thus this whole expression may be considered

as a "basis vector autocorrelation" sequence, which we will iabelfL The correction factor is the ratio of the actual

to expected variance times the dot product or projection of two normalized sequences: the true noise

autocorrelation, P, md the basis vector autocorrelation, _.

(14)

(15)

0`2

it

The ratio of variances is just a correction for the assumed and true noise variance. If we had assumed the correct

variance, but had ignored the correlations at non-zero lags, the correction would be just the indicated projection.

This projection may be interpreted in the frequency domain as well. Using Parseval's theorem as applied to finite

series, the product of terms in the time domain is related to the product in the frequency domain. This is a special

case of the fact that the product in the time domain is a convolution in the frequency domain, but where we are

concerned the "DC" component in the time domain which is given by the spectrum evaluated at zero frequency.

Let the Discrete Fourier Transform be defined as
N-1

Z .2linkDFT (?) . f e-J-_--

h-O
Using Parseval'stheorem gives

(16)

1 ----) (17)
--_ DFT(p) DFT (_))
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The transform of the autocorrelation is the power spectrum. Thus the correction factor is related to the projection

of the true noise power spectrum and what we may define as the "basis vector power spectrum."

The easiest way to apply this interpretation to a multiple parameter case is to choose a set of orthogonal basis

vectors so that Pw, C, and P are all diagonal matrices and the parameter estimates can be decoupled. The use of

this interpretation of the correction factor will be discussed with some specific examples in Sections 4 and 5.

2.5 LINEAR COMBINATIONS OF COLORS

At times it will be useful to consider the noise covariance as the combination of two different noise types. In this
case, since Equation (10) is linear in R, we have

Ps = (HTH)'I Ht(RI+Rz) H

" (HTH) "1 Ht R 1 H (HTH} "1 (18)

Thus if the effects of two independent noise sources are evaluated, the totaI effect from both can be computed
the linear sum of the variances due to their separate effects. (Note that the combination is linear in the variance,
not linear in the standard deviation of the noise.)

(HTH) -1

+ (HTH) "1 H r R 2 H (HTH) "1

3. COLORED NOISE SAMPLES

This section defines some specific types of colored noise for analysis and provides examples for illustration.

3.1 NOISE SIMULATION AND CHARACTERIZATION

Stationary noise of any desired spectrum can be obtained by passing white noise through an appropriate filter. Any

stable time invariant linear filter will color a white noise input according to its frequency response. Since there

are as many possible "colors" to noise as there are frequency response curves, which is an uncountable infinity of

curves, we will necessarily restrict our attention to a few simple classes of coloring for illustrating specific cases.

The theory of digital filtering and time series analysis is covered in numerous texts (e.g. Ref. 16-19). For this

discussion we will simply provide a few definitions to clarify the noise models that will be used in the sample
cases that follow.

In the time domain, a linear filter is defined by its impulse response which when convolved with its input, in our

case white noise, produces the system output, colored noise. The variance of the output noise from a filter will be

given by the sum of squares of the impulse response sequence. In the examples shown we will routinely

normalize the output variance to unity and have the plot scales cover +/- 3 standard deviations for consistency.

The most efficient way to generate colored noise for fairly simple processes is through linear difference equations.

Care must be given to the initial conditions in the noise generation to assure immediately stationary realization in a

statistical sense (Reference 19), otherwise the noise must be simulated for a period to reach a steady state
(particularly for long lag process simulations).

A stationary stochastic (noise) process is characterized by its autocovariance function or alternatively by the Fourier

transform of the autocovariance function which is its power spectral density (PSD). The autocovariance is defined
as

7(k)- E[ x(n) x(n+k) ] (19)
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We will refer to the autocorrelation f_nction (ACF), which is the autocovariance normalized by its value at zero

lag(whichisitsvariance),
p(k) - ¥(k)

(20)
Since this is the noise characterization that enters directly into our formulas for evaluation of the colored noise

effects on a least squares estimation accuracy, we note the autocorrelation functions for the sample noise

processes presented below.

3.2 WHITE NOISE

Figure 2 shows the appearance of white noise with uniform and Gaussian probability distributions, both of which

are familiar to those with data processing experience. As stated earlier our definition of stationary white noise is

just that the data samples are independent and identically distributed. The most common assumption about the

distribution is that it is Gaussian because of the tractable statistical properties. We will use the Gaussian noise as

input to filters to simulate the colored noise shown here, but it is noted that the choice of uniform or Gaussian

input distributions does not noticeably affect the appearance of the filtered noise. A result of the central limit

theorem is that the more heavily faltered the noise is, the more the output distribution will approach Gaussian no

matter what the input distribution.

Note also that the number of data samples plotted and the plot scaling impacts the visual appearance of any noise.

We use 400 points for each of the plots shown here for uniformity. The plot scales are set at the expected value

for three standard deviations. Data quantization can also significantly impact the appearance, but we will not

simulate quantization here.

(a) White Noise

Uniform

Distribution

(b) White Noise

Gaussian

Distribution

Figure 2. Sample White Noise with Uniform end Gausslan Distributions

3.3 LOWPASS NOISE

A simple single pole lowpass filter of white noise, w(n), is specified by the linear difference equation:

x(n) = @ x(n-1) + w(n)
(20

where _ is the pole location. This is known as a first order autoregressive process (AR(I)-a label we will use for

brevity). It is also commonly called a first order stationary Marker process. The autocorrelation for this process

is given by

p(k) = ,Ikl (22)
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Thus _ gives the correlation between consecutive samples. Samples of this type of noise for selected values of the

¢, are shown in Figure 3. The values of _ shown correspond to effective "time constants - r" (for the correlation
to decay to I/e) of 2, 15, and 100 samples duration.

= 0.607 ¢ = 2

0 n 400

Figure 3. Sample Lowpass Noise with Selected Time Constants (400 Samples Plotted)

Since the general difficulty of reverting the noise ¢ovariance matrix R is sometimes cited as a reason for not attempting the
optimal weighting, it is interesting to note that for this particular noise model, the noise covariance matrix has an exact inverse:

Nolle Covarlance Opttmel Welght.tng

1 -_ o

R - _Z _ 1 W - R "1 1 "# 1+_2 -It (23)

1 -e z

_n _ I 0
"# I

Another type of lowpass filter is a simple N-point running average filter. The autocorrelation
function is a finite triangular shaped sequence:

Ikl
p(k) = 1- _-, Jk I < N, 0 other'wlse (24)

A sample 23-point framing average filter of the same input white noise sequence is shown in Figure 4. Note the similarity

with the AR(I) process with _ - .936. This similarity was emphasized by choosing the number of points so that the above

finite autocorrelation function was a simple linear approximation to the AR(1) exponential decay curve. This illustrates how

the appearance of many of the general visual features in the filtered noise are the same for filters with basically the same

short term correlations. The long tail in the AR(I) process does not significantly influence the visual apw.arance of the noise.

n 400

Figure 4. Sample 23-point Running Average Filter of White Noise
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3.4 HIGHPASS NOISE

The AR(I) lowpass filter becomes a simple highpass filter for _ less than zero.

Figure 5.

A sample klghpus noise plot isshown in

Figure 5. Sample Highpsss Noise, • - -0.607

3.5 BANDPASS NOISE

To generate noise with a selected frequency emphasis, we will utilize a simple two pole filter with complex

conjugate roots so that our impulse response function remains real. This noise process is a second order

autoregressive AR(2) model or second order stationary Markov process. In terms of pole locations at radius r and

angle O around the unit circle, the linear difference equations for generating this noise are given by

x(n) ,. w(n) + 2r cos(} x(n-l) - n 2 x(n-2) (25)

The autocorrelation function is given by z

p(k) _, rk [ cos (kS) + cose i-r- s,n (ke)] (26)s|nO l+r "2
Two samples of noise generated in this way are shown in Figure 6 for a relatively high and relatively low

frequency emphasis.
• - 0.936 _' - lS period - 10 s_les

,,I... !

(a) 1 cycle _ l_At_. _J_,a,,_,. _J_J_ J_)_,_ _, _ J

per 10
samples

0 n 400

- 0.936 1" - 15 p4ciod - 33 sa._o'les

(b) 1 cycle . . A/_ ._ f_ A _-_ /\ .,, A.,_I
per 33
samples

n 400

Figure 6. Bendpess Filter Noise with Two Different Frequencies Emphasized

3.6 COMBINED NOISE MODELS

Noises of any particular types can be combined and it is important to note that a low amplitude of one "color" can

be hidden by the dominance of another, although it seems that human eye and brain do a pretty good job of

discriminating patterns. For example, Figure 7 shows a combination of independent white noise of standard

deviation 0.8 with the moderate lag |owpass noise, AR(I), _ equal to 0.936, of standard deviation 0.6 (the total

variance is (0.6) = + (0.8) = - 1.0). The total effect on estimation accuracy will equal the combination of their

separate effects as noted in Section 2.5.
Co=b/ned noisa r rhine .8o + .So _ - .936

-3

0 n 400

Figure 7. Combined Noise Sample
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4. ESTIMATION OF THE MEAN

It is instructive to start with the simplest of cases in order to understand the effects of colored noise on estimation. Thus we

begin by reviewing the effects of colored noise in the estimation of the mean of a single sequence of measurements.

Although this is a simple case it can be considered as basically applicable to some attitude estimation cases, for example if a

spacecraft is inertially pointing and collecting star measurements under basically the same geometry. Further, when several

parameters are being estimated, one of the parameters, a measurement bias for example, may essentially be computed from
the mean of the measurements.

4.1 ACCURACY v$ SAMPLES IN LOWPASS NOISE

We will start with the simplest lowpass filter noise, a first order autoregressive process (AR(I)) or simple Markov process as

defined in Equation 21. The partials of all measurements w.r.t the mean is 1, so the basis vector contains all 1 's, and the

unweighted estimate of the mean is the sample average. One can derive a formula for the uncertainty in the average as an

estimator of the mean directly through slightly tedious algebra and recognition of the proper series summations. One obtains

Z 1 { 1+_ 2_ " _".1-_ II "_"T ,-, N (27)

One can also compute the optimally weighted (or maximum likelihood) estimate of the mean, using the exact inverse noted in

Equation (23) to obtain:

OPT N 1 - _ + 2@__ (28)
N

Results of the uncertainty in these various estimates of the mean are shown in Figure 8. Two different values for the

correlation between samples are illustrated. Both the unweighted and weighted (suboptimal and optimal) estimates of the

mean are less accurate in the lowpass noise. It is interesting to note that the tmweighted estimate of the mean is almost as

accurate as the optimally weighted estimate even when the correlation between samples is fairly high. (The relative

weighting of data points is give by the sum of the columns in the weight matrix (see Equation 23), so it is interesting to note

that the optimal weighting for this noise model simply adds more weight to the end points. One interpretation of this is that

the end points carry more information because of correlations with the data beyond the end points.) On the other hand, the

white noise estimate of the accuracy is unrealistically optimistic when significant lowpess noise is present.

Standard

Deviation

of Mean

Figure 8.

J

• ffi .936

O'opT

;
• = .607

l
White Noise

0 i
1 n LO0

Standard Deviation of Mean vs Number of Samples, in Simple Lowpass Noise

4.2 ASYMPTOTIC RESULTS

A feature to note in Figure 8 is that the ratio of actual accuracy to that predicted by white noise appears consistent as the

number of samples gets large. In fact, it can be seen from the formulas (27) and (28) that ratio of the accuracy of both the

estimators to the accuracy assuming white noise converges to a limit for large N, which is given by:

I
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0.2 2

1tm AVG 1tm OPT = 1+_
N-_ 02 = N-_ 02 1-----'_- (29)

M M

This conv_ rstio, which applies to both the unweighted and weighted least squares estinmms, is shown in Figure 9 as •

function of the correlation betwem samples, _#. Here the range of 4p is allowed to go from -I to I to illustrsm effects from

extreme highlmss to extreme lowpas noise. This ilhmtmtes how the sccurscy in the estimate of the mean is lower m lowp, m
10

afaclim
i

0
-1

Figure 9.

f

/
/

Asymptotic Ratio for Colored vs White Noise Accuracy

noise, but higher in highpass noise. In the extreme case for highpass noise, the data may be osculating back and

forth, but the expected value of the midpoint is nevertheless exactly the mean. The extreme case for Iowpass noise

is a random bias which we will discuss more later. In this case, the ratio goes to infinity because the white noise

accuracy converges to zero. We will later see that for certain well behaved general multiparameter cases this

convergence ratio will apply approximately to aJl the parameters.

4.3 PROJECTION INTERPRETATION

Now let us take a first look at the correction factor interpretation previously discussed as it applies in this case. We

will examine it in the time domain and make a brief note about the corresponding results in the frequency domain.

Figure 10 illustrates the noise autocorrelation for this process and the basis vector autocorrelation for a short,

medium and long data span. The basis function is a constant, the convolution with itself makes the autocorrelation

a triangular pulse that is stretched out for longer data spans. Underneath each of the basis autocorrelation vectors is

the product whose sum gives us the correction factor relative to the white noise accuracy. As the data span goes to

infinity, the correction factor converges to the sum of the noise autocorrelation values which is a convergent

geometric series. _ I

[Noise Autocorrelstlon

P o

Basis Autocorrelation 17-.- z [

and product T/p """ tShort Span
0

Medium Span *I
0

Long Span

Figure 10. Projection Interpretation for Correction Factor to Estimate of the Mean
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It is easy to see from geometric arguments presented in this case that, more generally, the correction factor for the

estimation of the mean will converge for any finite autocorrelation (MA or FIR process), or any process where

the sum of the autocorrelation terms is finite. This sum is in fact finite for any ARMA stationary process. A

proof of this asymptotic convergence ratio for the estimation of the mean is given in Reference 19 (Chapter 7).

4.4 INCREASING SAMPLES IN A FIXED DATA SPAN

Another aspect of the difference between white noise and colored noise is illustrated by considering an increasing

number of sample points taken over a fixed data span. Under the ideal white noise model, no matter how close in

time the samples are taken they are still independent, so the variance decreases as the inverse of the number of

samples. In actual practice however, one expects that as samples become very close in time, they become highly

dependent so that at some number of samples little additional accuracy can be obtained.

Figure 11 illustrates this for the sampling of an AR(1) process to estimate the mean. As the time between samples

decreases, the correlations increase. The correlation as a function of time for the AR(I) process is modeled as an

exponential. Let r be a time constant for the process, so the correlation between consecutive samples in a data
span of length T divided into N samples is given by

(N) = • (30)

Putting this expression for _ in our formula for the variance of the average and taking the limit as N goes to

infinity, we obtain:

The

N.-)_ AVG

limit for the optimally weighted estimate is

ltm

N-._e

1tm cr2 = 2T 2ll-e-"JT2r _'_']

T T 2 (31)

o,2 2T
opt" T (32)

Standard

Deviation

of Mean

OAVC and OOPT

guishable)

0

Figure 1 1.

lq 80
k

Increasing the Number of Samples in a Fixed Data Span

5. SPIN AXIS ESTIMATION

We now apply the analysis to a case of estimating the spin axis attitude from a single data span of roll

measurements which may be from a horizon scanner. We will assume a simple geometry for the problem to permit

easier understanding of the results. The general nature of the results described can, however, be applied to a

=
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variety of similar attitude estimation scenarios. For example, it is similar to the computation of roll and yaw for an

Earth pointing spacecraR with calibrated gyro data.

5.1 GEOMETRY FOR SAMPLE CASES

The geometry for our sample cases is shown in Figure 12. We wU! assume a circular orbit and have the satellite

spin axis pointed at orbit normal, which idealizes a common mission geometry. To use round numbers (but

without loss of generality), we assume a 100 minute period orbit, so that a data span of 10 minutes, is one tenth of

an orbit. In order to apply convenient labels to the attitude, we will assume a polar orbit, so right ascension and

declination define the spin axis in the equatorial plane without any high declination scaling concerns.

It is convenient for interpretation to choose orthogonal axes for the attitude state parameters which are oriented so

that there is no coupling of the errors. This axis selection to decouple the parameters can be done in any least

squares estimate. For our sample cases will make those axes correspond to right ascension and declination (labeled

RA and DEC), by choosing our data span so that it is symmetric about the north pole point in the orbit. Thus the

major axis of the error ellipse for the spin axis will always be in the RA direction and the minor axis will be in the

DEC direction. To achieve generality for the orbit position one can read, instead of "RA" and "DEC," "the axis of

greatest uncertainty', and "the axis of least uncertainty," respectively.

Based on this geometry, the matrix of partials of the roll measurements with respect to RA and DEC state

parameters is simply a sine and cosine function of the orbit angle relative to the middle of the data span at the North

pole.

Data Span Chosen cos-Q s|n-Q

H = cos 0 sJn-O

s.° co.. .,o°
/ \ i /

OrbitPlane

\

'\ /

"-..._//" Orbit Path Right bameulcm and Declination
Uncertaintics Uncorrelated

Figure 12. Geometry for Spin Axis Estimation Sample Cases

5.2 SPIN AXIS ACCURACY VERSUS TIME IN LOWPASS NOISE

Figure 13 shows the DEC and RA accuracy versus time for 100 samples taken over ten minutes (1/10 orbit)

where the correlation between consecutive samples is 0.607 (see Figure 7 for noise sample plot.) This corresponds

to a 12 second time constant on the lowpass noise. The accuracy predicted in white noise is shown for

comparison, and also shown is the optimally weighted estimator accuracy which is hardly different from the

unweighted estimator accuracy in this case.
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Standard

Deviation

of Dec

10

0 0
0 t 10 0 t I0

Standard

Deviation

of RA

Figure 13. DEC and RA Accuracy Versus Time Over 10 Minutee

Notice that the DEC accuracy decreases in nearly exactly the same manner as the estimate for the mean illustrated

for the same correlation between samples in Figure 8. This is not surprising since the basis vector for the DEC

over this span, a small piece of a cosine wave, is very much like a constant.

The RA accuracy improves with the increasing data span as expected from the improved geometry that makes RA

observable. Notice that the correction factor that applies to DEC estimates applies practically just as well to the ILA
estimates in this case.

Figure 14 illustrates the equivalent results for an extreme lowpass noise case (see Figure 7 for sample of noise).

Here, something very interesting happens to the RA accuracy at very short data spans, where it is better than the

accuracy predicted in white noise. An interpretation of what is happening in this case shows how the lowpass

noise actually does provide better RA information. For a short data span the RA information is essentially

acquired from the slope which is fit to series of observations, since the RA basis vector is a small piece of a sine

wave. When the noise is highly filtered, a little piece of the data actually carries more reliable information about

the slope than a group of completely random white noise measurements. In the limiting case where _ = 1, the

data has a random bias, but a sequence of points still retains the proper slope which will be fit properly in a least
squares procedure. This limitin= case is discussed further below.

1 _m___ I i0

Standard

Deviation

of Dec

0
0

Figure 14.

0
t 10 0 t 10

DEC end RA Accuracy for Extreme Lowpass Noise Case, e-.99

Standard

Deviation

of RA

5.3 EFFECT OF A RANDOM BIAS ON ACCURACY

In the limiting case where the correlation term _ - 1, the noise model provides the effect of a random bias (a bias

that is random for each data span). To the first order, a bias affects DEC by exactly the size of the bias, but does

not impact RA at all. Thus Equation 10 gives exactly this result.
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Since Equation 10 is valid for linear combinations of noise types, it is noteworthy that one can include a bias

uncertainty along with any colored noise model for computing the estimation accuracy. An illustration of this is

the limiting case of a combination of two AR(1) noise processes: one with a very short lag and one with a very

long lag. In the limit, one may consider this as white noise plus a constant correlation term which is effectively a
bias term. If one normalizes the overall noise autocorrelation function to unity with this model, one will find that

the RA accuracy actually improves relative to the white noise case, but it is important to recognize that one is just

effectively using a smaller white noise component along with the bias component which doesn't impact the RA

accuracy at all. If one is careful to scale for a unity white noise component along with a bias term, the RA

accuracy will improve exactly as without the bias, while the DEC accuracy, which is sensitive to the bias, will

improve with more observations but reach a limiting accuracy at the bias term. This result makes sense because a

very long term correlation must be expected to be exactly like a bias for a finite data span.

This highlights the point that whatever noise spectrum may be worst for one parameter will not be worst for all

the parameters. A very long term lag is worst for estimation of the mean, and is worst for the DEC estimation in

a relatively short data span as discussed above, but it is certainly not the worst effect on RA. Furthermore since

RA is the most uncertain axis for this data span, long lags do not give the worst type of noise impact on the

overall spin axis accuracy. We will discuss the type of noise spectrum that can be worst on the overall accuracy,

but it will be helpful to do that after we review the insights that can be gained from our projection interpretation.

5.4 PROJECTION INTERPRETATION5

Figure 15 shows the basis vector autocorrelation and basis vector power spectral densities for the RA and DEC in

the 10 minute data span. The basis function for DEC, a small piece of a cosine wave, is very much like a

constant, so the autocorrelation looks much like that for estimation of the mean as shown in Figure 9. The basis

vector power spectral density 0iterally the discrete Fourier transform of the sampled autocorrelation) is practically
a Kronecker delta function. The basis function for RA, a small piece of a sine wave like a linear constant slope

line, gives the "mustache shaped" autocorrelation shown. The power spectral density is zero at the zero

frequency, indicating the zero mean of the autocorrelation, and shows a peak at the lowest sampling frequency of

the Discrete Fourier Transform, and falls off rapidly with higher frequency. (Note the sampling frequencies of

the DFT correspond to sine waves with integer numbers of cycles of the data period). The DFT highlights the

essentially low frequency content of these basis f_nctions.

One can see how any fairly short period correlation would cause similar effects in RA and DEC to the correction
factor to the white noise effects. Note that white noise is a delta function in the time domain and a constant in the

frequency domain. Thus a slightly broader noise autocorrelation in the time domain makes a correction factor

slightly greater than one.

Auto-

correlation

DEC RA

-1 °I
-100 LO0 -100 _.OO

Power 1 o.7 /

Spectral

Density o o
O 33. 0 31

Figure 15. Autocorrelaflon and Power Spectral Density for DEC and RA Basis Vectors for 10 Minute Span
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It is easy to see the expected effect of random bias on RA and DEC using the projection interpretation. Note that

a random bias autocorrelation function corresponds to constant value of 1 while the PSD is a Kronecker delta

function (times N). 'rnus the bias has no effect on RA, while having maximum effect on DEC.

One can also use the projection interpretation to develop a sense of the worst type of noise to impact a parameter.

In general, one can select a noise model that has similar frequency content as the basis vector to maximum errors.

An extreme worst case might be a sine wave of exactly the dominant frequency of the basis. The autocorrelation

function for a sine wave of random phase is a cosine function of the same frequency. In particular for RA in this

case one can note by inspection of the basis autocorrelation that the worst frequency would have a period of about

2/3 of the data span length (it would change sign at the same point as the RA basis autocorrelation).

5.5 UNCERTAINTY VERSUS NOISE COLOR

We will apply the noise model generated by a simple 2 pole filter in order to show the sensitivity of our parameter

estimates to the frequency emphasis of the noise. We choose complex conjugate roots to define a real impulse

response. The closeness of the poles to the unit circle roughly defines the narrowness of the passband, so we will

keep this distance fixed as we move the poles apart and around the unit circle to vary the peak frequency response.

We are interested in the low frequency effects that we have predicted to impact our RA estimates. Thus we will

vary the peak frequency from near zero to about twice the frequency corresponding to the data span duration. The

autocorrelation function corresponding to this noise process is given by Equation (26).

The attitude accuracy in RA and DEC in response to a moderately narrowband noise and to an extremely

narrowband noise is shown in Figure 16. The extremely narrowband noise may be thought of practically as a sine

wave of fixed frequency and unit amplitude but random phase. As predicted by the discussion in the previous

subsection, the frequencies near 2/3 of the data span frequency have the worst effect on RA accuracy. The DEC

accuracy, on the other hand, improves as the dominant frequencies get higher.

The accuracies that would result from the optimal data weighting are included in Figure 16, illustrating that in this

colored noise case the weighting can make a significant difference to the estimator accuracy.

Relatively

Wideband

Spectrum

DEC RA

0 (a:L 0.3 wl, 0.3

k k

Relatively

Narrowband

Spectrum

0 cal. O. u:L O. 3

]¢ k

(Upper curve for suboptimal/unweighted estimator; lower curve for optimal/weighted estimator)

Figure 16. Standard Deviation Uncertainty Versus Low Frequency Noise From 0 to 2 Cycles Par Data Span
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5.6 EXPECTED EFFECTS FOR LONGER DATA SPANS

By looking at how the basis vector autocorrelation and power spectal density change as the data span increases, it

is possible to make some general predictions about the effects that may be expected from colored noise and biases

as longer data spans are used. Figure 17 shows the RA and DEC basis vectors and their autocorrelation functions

for selected lengths of data spans. The characteristic shapes seen in Figure 15 for the short span is still seen until
more than about half an orbit is accumulated. Thus RA remains most sensitive to noise periods of about 2/3 of

the data span and DEC remains most sensitive to random biases. As the data span gets beyond one orbit the

autocorrelation functions for RA and DEC undergo a transition in their shapes so that for two or more orbits both

are similar: a cosine function shaped by a triangular window in amplitude. (In the limit of long spans, this

illustrates how the cosine wave is the autocorrelation for a signal with random phase.) The power spectral density

likewise undergoes transition from DEC sensitive to the zero frequency and RA sensitive to just the two lowest

non-zero frequencies in the discret transform, evolving to bo_ i_ and DEC sensitive primarily to the orbit

frequency.

BasisVectors RA Autocorrelation
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Figure 17. Basis Vectors and Their Autocorralation Function for Longer Data Spans

Thus in multi-orbit data spans, neither RA nor DEC is sensitive to a random bias, and both are most sensitive to

noise frequencies at orbital frequency. Since many physical phenomena occur at orbit frequencies (e.g.,

spacecraft temperatures, orbit altitude, atmospheric drag, magnetic field changes, and science instrument

operations), it is a useful to remember that any unmodeled or random aspects of their effects on sensor

measurements are a potential source of noise with frequency content to which attitude solutions are most sensitive.

The effects of relatively short term correlations, on the other hand, can be shown to remain quite constant in

terms of a correction factor as the data span increases. To understand this, keep in mind that the time scales are

increasing in Figures 17 (a) through (c), and an autocorrelation function representing short term correlations stays

(squeezed with the time scale) inside the main central peak which is always found. Thus the correction factor

from the projection can be expected to converge quickly.

6. BRIEF DISCUSSION OF GENERAL RESULTS

The results described above can be generalized for what we can call "well behaved cases:" those where the basis

vector frequency content is low relative to the data sampling frequency. This would apply, for example, to any

set of orthogonal low order polynomials. An ideal set of basis vectors from the frequency analysis standpoint is a

finite Fourier series; then the basis vector power spectral densities are spikes at each of the lowest frequencies in

the discrete transform. Polynomials would show a similar behavior with each term of higher order showing a
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For these cases we can expect that the effects of short period correlations can be accomodated by a correction

factor in predicting the estimator accuracy, and unweighted least squares will perform almost as well as optimal

weighting. Cases where short term correlations can still impact the accuracy significantly will occur, for

example, in cases where the discrimination of two basis vectors relies heavily on a relatively few observation
close in time.

7. CONCLUSIONS

Techniques for analyzing the effects of colored noise on unweighted least squares accuracy have been explored, and

an illuminating interpretation of the effects has been presented. These techniques were applied to some simple but

representative sample cases to show the colored noise impacts. More work remains to be done to apply these

techniques to additional and more complex cases, but nevertheless certain important conclusions may be drawn
from the general analysis and the cases already explored.

. If a model for the actual noise correlations is available, the actual accuracy of the unweighted estimator can

be evaluated directly (without requiring a matrix inverse). This is recommended.

, In certain commonly encountered well behaved cases (moderately lowpass noise and very low frequency

content in the basis functions), the effects of relatively short period correlations can be accommodated by a
simple correction factor to the white noise accuracy. This can be applied as a correction to the assumed
white noise standard deviation.

. In these well behaved cases the optimally weighted estimator does not perform a lot better than the

unweighted estimator. In this sense the unweighted least squares can be justified with colored noise, but the

proper formula should be used to compute the expected uncertainty of the parameter estimates.

. In general noise frequencies that are concentrated near the frequencies of the basis functions have the

greatest impact on the accuracy of the corresponding parameter, as might be expected. This is quantified

mathematically in the frequency domain projection interpretation of the white noise correction factor.

, Noise frequencies with corresponding periods of about 2/3 the data span length have the worst impact

when an approximat_y]_ (constant slope)term is being fit to the data.

. Shorter data spans can be expected to be more sensitive to noise correlations particularly because

correlations with time constants on the order of the data span are more likely.

° The techniques described here can also be used to consider the effects of random biases on the solution

accuracy.

Much further work can be done to extend the above results more generally and also more specifically to relevant

applications. The author believes there is yet more to be explored in the relationship between spectral analysis

and least squares solution accuracy. Since noise spectral content is shown to have a notable effect on the

predicted accuracy of data fits, a key to improved knowledge of actual accuracies is improved knowledge of the
spectral content of sensor noise.
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ABSTRACT

The fundamental challenge in identification of nonlinear dynamic systems is determining the

appropriate form of the model. A robust technique is presented in this paper which essentially

eliminates this problem for many applications.

The technique is based on the Minimum Model Error (MME) optimal estimation approach.

A detailed literature review is included in which fundamental differences between the current

approach and previous work is described. The most significant feature of the current work is the

ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the

nonlinearities, in contrast to existing nonlinear identification approaches which usually require

detailed assumptions of the nonlinearities. Model form is determined via statistical correlation

of the MME optimal state estimates with the MME optimal model error estimates. The example

illustrations indicate that the method is robust with respect to prior ignorance of the model, and

with respect to measurement noise, measurement frequency, and measurement record length.
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INTRODUCTION

The widespread existence of nonlinear behavior in many dynamic systems is well-

documented, e.g, Thompson and Stewart [1]; Nayfeh and Mook [2]. In particular, virtually

every problem associated with orbit estimation, flight trajectory estimation, spacecraft dynamics,

etc., is known to exhibit nonlinear behavior. Many excellent methods for analyzing nonlin-

ear system models have been developed. However, a key practical link is often overlooked,

namely: How does one obtain an accurate mathematical model for the dynamics of a particular

complicated nonlinear system? General methods for actually obtaining accurate models for real

physical systems are not nearly as widespread or well developed as are the techniques available

for analyzing models.

Accurate dynamic models are necessary for many tasks, including basic physical understand-

ing, analysis, performance prediction, evaluation, life cycle estimation, control system design,

etc. For example, most filter design assumes white process noise, yet many nonlinear effects are

inherently non-zero mean; e.g., quadratic nonlinearities are always positive. In order to obtain

a model with truly zero mean process noise for filter design purposes, all of the quadratic terms

(and many other nonlinearities) must be well modeled. However, the complexity of many real

systems greatly diminishes the possibility of accurately constructing a dynamic model purely

from analysis using the laws of physics.

Identification is the process of developing an accurate mathematical model for a system,

given a set of output measurements and knowledge of the input. Many well developed and

efficient identification algorithms already exist for linear systems (e.g., [3]-[7]). These often

may be employed to model nonlinear systems when the system nonlinearities are small, and/or

the system operates in a small linear regime. However, linearization does not work well (if

at all) in every application, and even when it does provide a reasonable approximation, the

approximation is normally limited to a small region about the operating point of linearization.

Consequently, there is a real need for nonlinear identification algorithms. If nonlinearities are a

predominant part of a system's behavior, using a linear model to describe such a system leads

to inconsistencies ranglhg from in-aCcurate numerical results tO misrepresentation of the system's

qualitative behavior. Many important characteristics of nonlinear behavior, such as multiple

steady-states, limit cycles, hysteresis, softening or hardening systems, chaos, etc., have no linear

equivalent. Since nonlinearities are seldomly easily characterized, identification techniques may

prove beneficial in developing accurate mathematical representations of nonlinear systems.

Numerous methods for the identification of nonlinear systems have been developed in the

past two decades. Many of these techniques are reviewed in Natke, Juang and Gawronski [8],

Billings [9], and Bekey [10]. Most methods fall into one of the following categories:

[] describing the nonlinear system using a linear model

[] the direct equatisn approach

[] representing the nonlinear system in a series expansion, and obtaining the respective coef-

ficients either by using a regression estimation technique, by minimizing a cost functional,

by using correlation techniques, or by some other approach
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[] obtaining a graphical representationof the nonlinear term(s), then finding an analytical
model for the nonlinearity

With suchdiversity of nonlinearidentificationtechniques,the choiceof a particularalgorithm
may be basedon criteria suchas: the degreeto which prior assumptionsof the model form
affect the user's effort in applying the algorithms; the number of iterations required; the

sensitivity to the presence of measurement noise in the data; the number of state measurements

needed; whether or not knowledge of the initial conditions is required; the kind of forcing

input(s) required or permitted (step, white gaussian noise, sinusoidal, etc.); the ability to handle

hysteritic or discontinuous nonlinearities; the degree of a priori knowledge of system properties

required; and the computational requirements. Most algorithms differ widely in at least some of

these comparisons; the choice of a particular technique depends on the needs of the particular

application.

Among the methods which linearize the nonlinear system are those presented by Jedner and

Unbehauen [11] and Ibanez [12]. Jedner and Unbehauen represent a nonlinear system, which

may often operate in small regions around a number of operating points, by an equivalent number

of linear submodels. It is assumed that the system operates at only a few points. Although the

model may work well for controller design, the points at which the system is operating must be

known and the linear models apply only within the operating regions. Ibanez takes a slightly

different approach by assuming the system response to be periodic at the forcing frequency. An

approximate u'ansfer function is constructed. The transfer function is dependent on the amplitude

as well as on the exciting frequency and is valid only within the region of exciting frequencies.

The direct equation approach is used by Yasuda, Kawamura and Watanabe [13], [14]. The

input and output measurements of a dynamic process are expressed in a Fourier Series using, for

example, an FFT algorithm. The system nonlinearity is represented as a sum of polynomials with

unknown coefficients. Applying the principle of harmonic balance, the polynomial coefficients

as well as the other system parameters are obtained accurately. Knowledge of the nonlinearity

is needed to construct the polynomial. Truncation in the Fourier Series expansion of the input

or output may lead to error.

The regression estimation approach is used by Billings and Voon [15] and Greblick and

Pawlak [16]. Billings and Voon use the NARMAX model (Nonlinear Auto Regressive Moving

Average model with exogenous inputs) to represent the nonlinear system. A stepwise regression

method determines the significant terms in the NARMAX model. Then a prediction-error

algorithm provides optimal estimates of the final model parameters. Greblick and Pawlak

represent the linear dynamic submodel by an ARMA model and the nonlinearities by a Borel

function. A non-parametric kernel regression estimation is employed to obtain the final analytical
model.

Kortman and Unbehauen [17] and Distefano and Rath [18] use the minimization of an error

cost function as a means of obtaining the coefficients of the functions used to represent the

nonlinearities. The method presented by Kortman and Unbehauen uses only system input and

output information to estimate the polynomial representing the nonlinearities and the parameters
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of the linearcomponents.It is robust in thepresenceof noise,althoughiteration is necessary.
Distefanoand Rathpresenttwo techniques,a non-iterativedirect identificationand an iterative
directidentification. In thefirst technique,measurementof all variablesis requiredandthemodel
parametersareobtainedthroughtheminimizationof anerror function. In the secondtechnique,
iteration is usedto minimize a cost function yielding the systemparametersin addition to the
statetrajectories.In DistefanoandRath, the nonlinearmodel form is also takento beknown.

In other techniques,asin statisticallinearization,a nonlinearrelation is replacedby a linear
equivalentgain. Broersen[19] extendsthe techniqueof statisticallinearizationby representing
thenonlinearityasalinearcombinationof anumberof arbitraryfunctions.Correlationtechniques
are thenusedto determinethecoefficientsof thesefunctions.The numberandtype of functions
selecteddependson thedesiredaccuracyaswell assomeknowledgeof the systemnonlinearity.
Reasonableaccuracy is obtained in the presenceof noise and no iterations are necessary.
Although someof thebasicpropertiesof the truenonlinearOutputarepreserved,it is limited to
only randomexcitation,andknowledgeof all statesand forcing termsis required.

In themethodof multiplescales(Hanagud,MayyappaandCraig[20]), aperturbationsolution
to the nonlinearequation of motion is obtained. An objective function is built employing
an integral least squaresapproach. The minimization of the functional yields the unknown
parameters.Data on only one field variableis necessary,and the method is effective in the
presenceof high noise. The method of multiple scales,however, is restricted to systems
with small damping and slight nonlinearitiesand,as in most other methods,the form of the
nonlinearity is assumeda priori. The methodtypically requiressomealgebraicmanipulations
which may be quite involved, and thesemanipulationsareonly valid for a particular assumed
nonlinearform. If the assumednonlinearform is changed,the algebramustbe repeated.

Severaltechniquesdescribethenonlinearsystemusingthe Volterraor Wiener kernels.The
Volterraseriesconsistsof the summationof impulseresponsesof increasingdimensionality.The
Wiener seriesis also a set of orthogonalfunctionsin which the input is white gaussiannoise.
MarmarelisandUdwadia[21], for example,estimatethefirst andhigherorderkernelsappearing
in the Volterra seriesusing correlationtechniques.Chen,Ishii and Suzumura[22] usecross-
correlationfunctionsin addition to the VolterraandWienerseriesto describenonlinearmodels
and to show the relation betweenthe systeminner structureand the series. Although weakly
nonlinearsystemscanbedescribedby thefirst few kernels,for stronglynonlinearsystemsthese
seriesgive accuratenumericalresultsonly at theexpenseof anexcessivenumberof coefficients.
This rendersthe analytical model impractical for control applications.

Other popular seriesused in nonlinearidentification are orthogonalpolynomials such as
Legendre(Wang and Chan [23]), Chebyshev,and Jacobi (Horn and Chou [24]). Horn and
Chou expandthe variablesof the systeminto a shifted Jacobiseries,reducing the nonlinear
stateequationinto a linearalgebraicmatrix equation.The unknownparametersof thenonlinear
systemare thenestimatedusing least squares. Even thoughthe algorithm works well in the
presenceof noise,the nonlinearform must beknown a priori.
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Methods for the identification of nonlinearsystemshave also beendevelopedbasedon
the extendedKalman filter. The extendedKalman filter is the linear Kalman filter applied
to nonlinearsystemsby linearizing the nonlinearmodel into a Taylor seriesexpansionabout
the estimatedstatevector. Yun and Shinozuka[25] apply the extendedKalman filter for the
parameterestimationof a quadratic term. The state vector is augmentedby including the
unknownparametersin additionto thestatevariabies_ough aseriesof iterations,theresponse,
aswell astheunknownparameters,areestimatedby the Kalmanfilter. Among its disavantages
arehigh sensitivity to initial conditions,in particularif the initial conditionsare barelyknown.
The nonlinearform mustbechosena priori in orderto estimatethe correspondingparameter(s).

Hammond,Lo and Seager-Smith[26] usean optimal control techniquebasedon optimal
control methodsemployedfor linear systemdeconvolution. The form of the linear model is
assumedto be known as well as the input and the output. A cost functional consistingof
the weighted sumof the squareof the error (betweenthe actual and estimatedoutput) yields
an optimal estimatedinput. The estimatedinput and the actualinput are used to obtain the
nonlinearityas a function of the state variables. Although no previous assumption is made of

the nonlinearities, there is no provision to deal with noise.

All of the techniques outlined above have proven useful in certain applications. However,

all of them are subject to one or more of the following shortcomings:

1. The form of the nonlinearity (quadratic, cubic, exponential, etc.) must be assumed a priori.

This is a very serious drawback, because the identification algorithm can only attempt to

find the best model in the assumed form. If the form is assumed incorrectly, the resulting

model may be so poor as to be useless, or it may appear to fit the data well enough that

the user erroneously concludes that the correct model has been obtained. Also, for many

techniques of this type, the effort required to test a given form is considerable, which greatly

diminishes the effectiveness since multiple form tests are less likely to be conducted.

2. Techniques which attempt to avoid the problem of a priori model form assumption through

the use of series expansions generally eliminate any possibility of understanding the under-

lying physics. Thus, although a good fit of the data might be achieved using a sufficient

number of terms in the series, physical insight is lost. Moreover, large systems and/or par-

ticularly complicated behavior may require that a very large number of terms be used to

obtain a given level of accuracy.

3. The presence of noise in the measurement data is notrigorously treated, yet noise is generally

unavoidable.

4. Initial conditions must be known in order to implement the algorithm.

5. The algorithm can only be implemented if the data is obtained using very specific system

excitations.

The algorithm of the current paper compares favorably with existing algorithms in most of

the categories listed above. It is robust with respect to measurement noise; does not require

knowledge of the initial conditions; is independent of the forcing (but, like all methods, assumes

that it is known); is not computationally prohibitive; and, most importantly, it requires minimal
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a priori assumptionsregardingtheform of themodelor the system properties. In fact, using the

correlation technique outlined in the next section, the algorithm essentially eliminates the need

to ever assume the nonlinear model form.

The identification algorithm is based on a combination of Minimum Model Error (MME)

state estimation, correlation techniques, and least squares. MME was first described by Mook

and Junkins [27]. The MME combines the available measurements and an assumed model of

the system to produce optimal estimates of the states and the model error. The assumed model

represents an initial attempt to model the system using direct analysis, but may be extremely

poor. Given the noisy output measurements of the system, MME estimates the state histories as

well as the error in the assumed model. In previous work, the correct form and corresponding

parameters of the nonlinear model were then estimated in a trial-and-error fashion, by assuming

a nonlinear (in the states) form of the error terms, and then determining the best least-squares

fit between the state estimates and the model error estimates. Thus, although the MME portion

of the algorithm did not require the model form to be assumed, the subsequent least'squares fit

between the state estimates and the model error estimates did. In Mook [28] it was shown that

this approach could accurately identify terms in a Duffing oscillator, in the presence of noise and

sparse measurements. The method worked well even when only a crude model of the dynamic

system was assumed, and the error model used for the least-squares fit contained numerous terms

in addition to the correct one(s). Later, in Mook and Stry [29], a simple harmonic oscillator

with quadratic feedback was simulated on an analog computer. The algorithm was shown to

accurately identify the nonlinear model from analog measurements.

In this paper, the identification of the model from the MME-produced state and model error

estimates is improved by using correlation techniques to select the form of the correction terms.

The correction terms, when added to the initially assumed model, yield the true model of the

system. The correction terms may consist of a combination of linear and nonlinear functions.

An extensive library of linear and nonlinear functions has been assembled. The correlation

technique is used to select the true forms from the library. Even when the true form of the

nonlinearity was not present in the iibrary,_:the correlation technique picks the closest form(s),

typically, the first term(s) in the Taylor Series expansion. Once the forms have been selected by

the correlation algorithm, least-squares is used to determine the model parameters.

IDENTIFICATION ALGORITHM

In this section, the identification algorithm is explained. First, the MME technique is briefly

reviewed, and then the correlation technique used to automate the model form determination is

explained in detail.

The MME may be summarized as follows (a more detailed explanation may be found

in Mook and Junkins [27]). Suppose there is a nonlinear system whose exact analytical

representation is unknown, but for which output measurements are available. Using whatever

means are available (analysis, finite elements, etc.), a system model is constructed. As shown

in [27]-[29], the MME works well even if this system model is poor. The MME combines the

z
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assumedmodelwith the measurementsto produceoptimalestimatesof (i) the statetrajectories,
and (ii) the error in the model. In the presentwork, thesestateandmodel error estimatesare
usedfor systemidentification.

Considera forced nonlineardynamic systemwhich may be modeledin state-spaceform
by the equation

g(t) = + £(t) + (1)

where z(t) is the n x I state vector consisting of the system states, A is the n x n state matrix,

F(t) is an n x I vector of known external excitation, and f(z(t),__(t)) is an n x 1 vector which

includes all of the system nonlinearities. State-observable discrete time domain measurements

are available for this system in the form

 (tk) = + to _<tk _<tl (2)

where __(tk) is an m x 1 measurement vector at time tk, gk is the accurate model of the

measurement process, and v_k represents measurement noise, v_k is assumed to be a zero-mean,

gaussian distributed process of known covariance Rk. The measurement vector __(tk) may

contain one or more of the system states. To implement MME, assume that a model, which

is generally not the true system model because of the difficulties inherent in obtaining the true

system model, is constructed in state-vector form as

= +__v(t) (3)

Here, we show a linear model because in practice, linearization is the most common approach

to modeling nonlinear systems. MME uses the assumed linear model in Eq. (3) and the noisy

measurements in Eq. (2) to find optimal estimates of the states and of the model error.

The model error, which includes the unknown nonlinear terms of the system, is represented

by the addition of a term to the assumed linear model as

_(t) = Ax(t) + F(t) + d_(t) (4)

where d(t) is the n x 1 model error to be estimated along with the states.

A cost functional, J, that consists of the weighted integral square of the model error term plus

the weighted sum square of the measurement-minus-estimated measurement residuals, is formed:

M

J -- El[___(tk) -- gk(_.(tk)_7_k)]TR;l[_(tk) -- ffk(_.(tk)_7_k)]l
k=l

+ d(r)TWd(r)dv (5)

where M is the number of measurement times, __(tk) is the estimated state vector and W is a

weight matrix to be determined.
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J is minimized with respect to the model error term, d(t). The necessary conditions for the

minimization lead to the following two point boundary value problem (TPBVP), (see Geering

[301),

g(t) = A__Ct)+ F(_) +_d(t)
_(t) = -ATA(t)

d(_)= -_W__(t)

)_(t +) = _(t_-) + 2HkR_-a _.(tk)- 9k(__(tk),tk) ]

6g

(5_)

(sb)

Csd)

_(to) =_ or __(to)=o (se)
_(tf)=_ I or _(ti)=o (51')

where _(t) is a vector of costates (Lagrange multipliers). Estimates of the states and of the model

error are produced by the solution of this two-point boundary value problem. The estimates

depend on the particular value of W. The solution is repeated until a value of W is obtained

which produces state estimates which satisfy the "covariance constraint", explained next.

According to the covarianee constraint, the measurement-minus-estimated measurement

residual covariance matrix must match the measurement-minus-truth error covariance matrix.

This may be written as

__(th) - gk(__(tk),tk)]T_(ti,) -- gk(_(tk), t_)] _ R_ (6)

During the minimization, the weight W is varied until the state estimates satisfy the covariance

constraint, i.e., the left hand side of Eq. (6) is approximately equal to the right hand side. The

model error is, therefore, the minimum adjustment to the model required for the estimated states

to predict the measurements with approximately the same covariance as the measurement error.

The TPBVP represented by Eqs. (5a) to (5f) contains jumps in the costates and, consequently,

in the model error. As evident from Eq. (5d), the size of the jump is directly proportional to

the measurement residual at each measurement time. The noisier the measurements, the larger

the jump size. A multiple shooting algorithm, developed by Mook and Lew [31], converts this

jump-discontinuous TPBVP into a set of linear algebraic equations which may be solved using

any linear equation solver. Multiple shooting also facilitates the analysis of a large number of

measurements, by processing the solution at the end of every set of jumps.

Correlation is a measure of the relationship that exists between two variables. The more

highly correlated two variables are, the more closely will the change in one variable correspond to

a change in the other variable. The cross:correlation coefficient between two discrete variables,

say z and y, is defined as (see Newland [32] or Witte [33])

oCt,u) = E_I(_ - _)(u_- _) (7)
O'z 0"7/n
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wheren is the number of data points and the overbar denotes the mean of those n points. _rz

is the standard deviation of the variable z and is defined as

i--
O'_ ---

C(z, y) is a measure of the linear relationship between variables z and y. The value of C(z, y)

lies in the range -1 < C'(x,y) < 1. If, for instance, changes in the value of x correspond to

perfectly predictable (linearly) changes in the value of y, where the changes in both variables

are of the same sign, then the value of C'(x,y) is 1. If the changes are of opposite sign but

still perfectly predictable, then the value of C(z,y) is -1. If changes in the values of x and y

tend to correspond in sign but are not perfectly predictable, then 0 < C(z,y) < 1. If changes

in the values of z and y tend to be of opposite sign but are not perfectly predictable, then

-1 < C(z, y) < 0. If there is no linear relationship between the values of x and Y, then

C'(:e,lt) = 0. For example, suppose z and !/are multiples of each other, z = K, y, where K

is an arbitrary constant of proportionality. Then

- _ 1.0
= E;\x - - (s)

The true functional form of the model error can be found by calculating the correlation of the

MME model error estimates with functions of the MME state estimates. If the functional form of

the actual system is used, and if the estimates from MME are perfect, then C'(a:,y) = 1.0. Thus,

an algorithm may be constructed which performs nonlinear system identification by (i) utilizing

the MME to process the available measurements and the initial model in order to produce state

estimates and model error estimates, and (ii) testing the correlation between the state estimates

and the model error estimates usi_:g a "sufficient number" of functional forms so that the actual

form is included among those tested. The MME does not require that the correct form of the

model be known a priori. The correlation tests may be performed using an existing library of

nonlinear functional forms, without input from the user. Thus, if the library is complete (in

the sense that it contains the actual model form), the identification of the nonlinear model is

accomplished, yet at no point in the algorithm is the user required to assume the correct model

form.

The success of the algorithm is determined by the ability of the MME to produce accurate

state and model error estimates, and by the completeness of the library of nonlinear functions

to be used in the correlation test. We now address these issues in order.

The MME has been shown to consistently produce state and model error estimates of high

accuracy in the presence of high measurement noise, low measurement frequency, and poor

initial model [27-29]. Generally, however, some noise is still present in both the state estimate

and the model error term, although these noise levels are considerably less than the noise in the

original data. Let the model error term be given by Xeorreetion ---- _g -]- _ where _ is the noise.
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The cross-correlation between the error term and the test function It becomes

C(z,y) Ei"=l(Zi- _')(Yi -ff) q- Ej_l _(YJ -ff)= ,_ 1.0 (9)

As long as the noise is negligible all terms containing _ are small and affect the result only

slightly. Thus, the correlation calculated for the actual function is close to, but not exactly equal

to, I, while the correlation calculated for incorrect terms remains close to 0. If the level of noise

• is excessive, say, of comparable magnitude to one or more of the actual nonlinear model terms,

then the ability of the correlation test to distinguish this term from similar terms may be greatly

reduced or eliminated. However, subsequent least-squares fit of the terms has, in every case

tested, correctly selected the actual nonlinear function from among those which the correlation

test could not distinguish. An example of this is shown in the next section.

The issue of completeness of the library is now addressed. The error term may be composed

of more than one function from the library, or the actual function may be missing from the

library. Consider first the case where the actual error is a combination of library terms, say, two

terms. The error term may be written Z_rreaio, = Zl +Z2 and the cross-correlation has the form

cCz,_) = Ei_l(zli - zl)(Yi - #) + Ej\lCz2j - _2)(Yj - Y) (10)

The cross-correlationishighestforthe term which constitutesthe largestpartof the error.Thus,

itisdesixableto execute the algorithmiteratively.The libraryterm which constitutesthe largest

portion of the actualmodel crror is idcntifiedfirstand then added to the MME modcl. Thc

entireprocess (includingMME) isthenrepeated,so thatnew stateand modcl errorestimatesare

obtained (notethatthe change in stateestimatesshould bc minimal, while the change in model

errorestimates should be a largereduction in magnitude). The largcstterm remaining in the

model erroris identifiedin each pass,thcn added to the initialMME modcl.

An alternativeto iterativeapplicationof the algorithm is to testthe correlationof combi-

nations of the libraryfunctions. An algorithm can be constructedwhich testscvcry possible

combination of the functionsexplicitlycontained in the library.This approach has not been

attempted in the examples which follow.

Ifthe actualmodel erroris not presentin the library,then testcases show thatthe highcst

correlationvalues are calculatedfor the terms in the seriesexpansion of the actualfunction.

Thus, for example, ifthe actualmodel errorwas of the form sin(z), but sin(z) was not prescnt

in the library,the correlationcoefficientsare highestfor the terms z, zs,zs,etc.However, the

testdescribed by Eq. 7 isvery fast,so the librarymay contain a very largenumber of terms.

The finalstcp in the identificationprocedure is to use a least-squaresalgorithm to fitthe

model errortothc functionalforms (i.e.,perform parameter identificationonce the truenonlincar

form has been determined). The error term is expanded into a combination of thc functional

forms such as

d(t) = afl(z(t)) +/3f2(z_(t)) + 7fn(_(t)) +... (11)
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where a, /_, 3', ... are unknown coefficients to be determined by least squares, and fl, f2,

f3, ... are functions which are selected as a result of the correlation test (often, however, only

one function is used at a time). Other parameters may be present inside the functions (such

as, for example, coefficients of exponents). Eq. (11) may be sampled repeatedly (using the

MME estimates) to obtain

or, in matrix form,

d(tl) = aflC_Ctl)) + flf2C_Ctl)) -t- 7fsCz_Ctl)) -t-...

d(t2) = afl(__(t2)) q- flf2(_(t2)) + 7fz(z__(t2)) +...

d(tl) = afl(_X(t )) + + 7fs(z_(tt)) +...

D__xi= MixpP_P_p×l

where/'= [a /_ 3'

d(t) are available continuously throughout the time domain, the parameter I may be chosen quite

large to improve the least squares fit. Generally, because of the potential jump discontinuities

in the model error estimates at the measurement times, it is desirable to pick the least squares

sampling times in Eq. (12) at points other than the measurement times. The least squares

estimate is found by minimizing the following cost functional with respect to P:

The solution is given by

(12)

...]T is the vector of coefficients for the terms in d(t). Since estimates of

¢_ = [D - Mp_]T[D- MP__]

p=(MTM)-IMTD

(13)

(14)

If the functions include parameters to be estimated, the equivalent nonlinear least-squares problem

is constructed.

The multiple shooting algorithm presented by Mook and Lew [31] was used to obtain the

MME solutions used in the tests presented in this paper. It was assumed in the examples that

MME obtained the dynamic error term without knowledge of the boundary conditions on _z,

so some distortion of the correction term at the initial and final times was expected due to the

constraints of Eqs. (5e-5f), i.e., by assuming no state knowledge is available at t0 or t f, we

constrain ,_(t0) = 0 and ,_(tI) = O. Therefore, in all test cases, the initial and final ten percent

of the correction term data was ignored in the least squares fit.

EXAMPLES

For illustrative purposes, the true system was chosen as a simple harmonic oscillator with

various forms of nonlinear feedback. The true system can be modeled as

(:)-(__01 10)(:)-t-(f(zOv)) (15)
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wherex is position, v is velocity and the dot indicates differentiation with respect to time. For

simplicity, the system was unforced. The term .f(x,v) represents the nonlinear terms to be

identified by the MME-based identification algorithm. Measurements were generated from the

true system, Eq. (15), with different kinds of nonlinear functions f(x,v). The ability of the

identification algorithm to identify the model with no prior knowledge of f(x, v) is tested. Table

1 shows the functions used in each simulation. Note that the unknown error term may be a

combination of linear and nonlinear functions. Table 1 also shows the initial conditions and the

amount of noise used to generate measurements for each test. The noise levels represent the

percentage of the peak system response (actual percentages are higher for the majority of the

measurements since the response is only at peak amplitude for brief periods).

Table 1

SUMMARY OF TEST CASES

TEST #

1

2

3

4

5

6

7

8

9

10

TRUE ERROR: f(x,v)

3.0*x*x

-0.1*x*x*v

-0.5*cos(x)*cos(v)

-1.0*v'sin(x)

-1.0*x*x - 0.25"v

- 1.0*x*x*x - 0. i'tan(v)

-1.0/cos(x)- 1.0*sin(v)

3.0*x*x

-1.0*x*x - 0.25"v

-1.0*x*x*x- 0.1*tan(v)

x(0) v(0)

0.175 0

NOISE

0

0.175 0 0

0.175 0 0

0.175 0 0

0.350 0 0

0.873 0 0

1.750 0 0

0.175 0 10%

0.350 0 10%

00.873 10%

The assumed model used for the MME analysis consisted of the undamped linear oscillator

part of the system,

(_)= (-01 10)(_) (16)

For each test, 200 measurements of position were obtained from the digital simulation of Eq. (15)

at a sampling rate of 10 Hz. The functional form of the dynamic error, f(_,v), was determined

solely from the least-squares fit of the functions identified during the correlation tests on the

MME state and model error estimates obtained using only the model in Eq. (16).

A library of functions was built consisting of approximately 300 of the most commonly

found nonlinear and linear forms. For a particular test, after the model error term was found

|
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from MME, it was correlated with each one of the functions in the library. The correlation test

of the entire library of functions did not take more than a few seconds to execute, since the

calculations are simple. The functional form of the unknown nonlinear term was chosen as the

one for which the absolute value of the cross-correlation coefficient was closest to 1. Table 2

shows the results for all 10 tests, including the true dynamic error, the highest cross-correlation

coefficient obtained, the corresponding functional form, and the respective coefficient computed

from the least squares fit. The star (*) indicates tests performed from noisy measurements.

Table 2.

IDENTIFICATION RESULTS FOR EACH TEST CASE

TEST#

1

I

i TRUE ERROR/S )
3.0*x*x

2 -0.1*x*x*v

3

4

5

6

7

8 •

9*

10"

-0.5*cos x)*cos(v)
-1.0*v'sin(x)

-1.0*x*x

-0. l'tan(v)

-1.O/cos(x)

-1.O'sin(v)

3.0*x*x

-1.0*x*x
i

-0.25"v

-1.0*x*x*x

-0.1*tan(v)

C(d(t),O

0.999

0.999

0.999

0.999

0.999

0.746

0.936

0.999

0.927

0.999

0.797

SELECTED

X*X

X*X*V

cos x)*coslv)
v'sin(x)

X*X

V

X*X*X

tan(v)

1/cos(x)

sin(v)

X*X

L.S°

2.99

-0.10

-0.49

-1.00

-0.99

-0.24

-1.00

-0.10

-0.99

-1.00
i

3.12

0.937 x*x -0.90

0.772 v -0.22

0.838 x*x*x

tan(y)0.583

For tests 1, 2, 3, and 4, the exact form of the nonlinearity was contained in the library and

the measurements did not contain noise. The calculated value of G(d(t), f) was 1 for the true

forms. In test 8, the library contained the exact form of the nonlinearity but the measurements

contained significant noise. The correlation for the correct term was much higher than for any

other term, but was approximately 0.8 instead of 1 due to the noise. In the cases where the

error term consisted of two functions but the measurements were noise-free (tests 5, 6 and

7), C(d(t),f) was close to one for both functions after applying the algorithm iteratively as

described in the previous section.

When noise and more than one function was present in the dynamic error term (tests 9 and

10), the maximum value of the cross-correlation coefficients dropped significantly and in some

cases did not immediately identify the actual form over other similar forms. As an example,

455



Table 3 showsthe top five cross-correlationvaluesfor the identificationof the tan(v) term in

test case 10. Note that the functions with the highest cross-correlation values are all similar in

form to tan(v), and the corresponding correlation coefficients are of similar magnitude. Since

C'(d(t), f) did not clearly identify tan(v) as the missing term, the five functions yielding the

highest G(d(t), f) values were individually least-squares fit to the model error term. In all cases

(i.e., repeating this test for a number of different random noise samples), the function with the

smallest least squares error cost was the correct function (tan(v)). Thus, the least-squares fit

of the parameters to the functional forms also serves as a second test if the correlation test is

inconclusive due to high noise levels.

Table 3.

HIGHEST CROSS-CORRELATION COEFFICIENTS

OBTAINED FOR THE TAN(V) TERM OF TEST CASE 10

FUNCTION

tan(v)

V

C(d(t),f)

0.583

-0.119

v*cos(x)*cos(v) 0.584 -0.150
1ii

v'cos(x) 0.586 -0.126

sin(v)*cos(x) 0.586 -0.133

L.S. cost

0.588

0.623

0.659

0.607

0.621

The number of data points used in the MME algorithm was irrelevant as long as there were

enough points to reasonably span the qualitative aspects of the system (e.g., sinusoidal terms

cannot be identified if the data only spans a small fraction of the period).

If the exact functional form of the dynamic error term was not in the function library, the

correlation procedure would pick the first term in the Taylor Series expansion of the exact form.

For example in a test case where the dynamic error term corresponded to z.sin(v) and z.sin(v)

was deleted from the library, the function with the largest G(d(t), f) was z • v. Similarly, in

several examples which are not shown the magnitude of the states, z and v, were small. Thus,

the trigonometric functions of position and velocity were approximately equal to the first term in

their Taylor Series expansions, i.e., cos(z) ._ 1.0, sin(z) ._ x, cos(v) .._ 1.0 and sin(v) _ v. In

these cases, assumptions of linearity are clearly valid, and are not of interest in the present work.

SUMMARY AND CONCLUSIONS

In this paper, an algorithm based on the MME estimation technique, coupled with correlation

tests and least squares, has been developed for identification of nonlinear systems. The results

of the examples indicate that the correlation technique applied to the MME-produced state and
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modelerrorestimatesenablestheform of themodelto beaccuratelydetermined,thuseliminating
therequirementthattheform beassumeda priori. Oncetheform is determined,the least-squares
fit providesexcellentparameteridentification. In casesof high noise,wherethe correlationtest
may not be able to distinguishthe actual form from similar forms, the least-squaresfit also
provedto be a reliable secondtest for determiningthe actualform.

At nopoint in thealgorithmis theuserrequiredto assumetheform of themodel,representing
a tremendousadvantageoverexistingtechniques,including thepreviousMME-basedwork. The
MME doesnot requirean accuratemodel in order to produceaccuratestateand model error
estimates,and the correlationtestsare automaticallyperformedon a large existing library of
functions.Additional functionsandmoresophisticatedmethodsof combiningexistingfunctions
canbeaddedto thecorrelationtestingportionof thealgorithm(theauthorsarecurrentlypursuing
this), virtually eliminating the likelihood that theactualmodelerror termsarenot tested.
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Minimum Fuel Coplanar Aeroassisted Orbital Transfer

Using Collocation and Nonlinear Programming

By

Yun Yuan Shi* and D. H. Young**
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Huntington Beach, California

ABSTRACT

The fuel optimal control problem arising in coplanar orbital iransfer employing
aeroassisted technology is addressed. The mission involves the transfer from high
energy orbit (HEO) to low energy orbit (LEO) without plane change. The basic
approach here is to employ a combination of propulsive maneuvers in space and
aerodynamic maneuvers in the atmosphere.

The basic sequence of events for the coplanar aeroassisted HEO to LEO orbit
transfer consists of three phases. In the first phase, the transfer begins with a deorbit
impulse at HEO which injects the vehicle into a elliptic transfer orbit with perigee inside
the atmosphere. In the second phase, the vehicle is optimally controlled by lift and
drag modulation to satisfy heating constraints and to exit the atmosphere with the
desired flight path angle and velocity so that the apogee of the exit orbit is the altitude
of the desired LEO. Finally, the second impulse is required to circularize the orbit at
LEO. The performance index is maximum final mass.

Simulation results show that the coplanar aerocapture is quite different from the
case where orbital plane changes are made inside the atmosphere. In the latter case,
the vehicle has to penetrate deeper into the atmosphere to perform the desired orbital
plane change. For the coplanar case, the vehicle needs only to penetrate the
atmosphere deep enough to reduce the exit velocity so the vehicle can be captured at
the desired LEO. The peak heating rates are lower and the entry corridor is wider.
From the thermal protection point of view, the coplanar transfer may be desirable.
Parametric studies also show the maximum peak heating rates and the entry corridor
width are functions of maximum lift coefficient.

The problem is solved using a direct optimization technique which uses
piecewise polynomial representation for the states and controls and collocation to
represent the differential equations. This converts the optimal control problem into a
nonlinear programming problem which is solved numerically by using a modified
version of NPSOL. Solutions were obtained for the described problem for cases with
and without heating constraints. The method appears to be more robust than other
optimization methods. In addition, the method can handle complex dynamical
constraints.

* Staff Manager, and ** Senior Specialist, Advance Flight System, Advanced
Technology.
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NOMENCLATURE

A

CD :
CDO :
CL :
CLR :
D :

g :
gs :
H :
J
K
L
m
R
Ra :
Rc :
Rd :
RE :
S :
t
V :
T

13
Y :

:

e :

I_ :

p :

Ai

AV

Sps/2
drag coefficient
zero-lift drag coefficient
lift coefficient
lift coefficient for maximum lift-to-drag ratio
drag force
gravitational acceleration
gravitational acceleration at surface level
altitude

performance index
induced drag factor
lift force
vehicle mass
distance from Earth center to vehicle center of gravity
radius of the atmospheric boundary
radius of the low Earth orbit (LEO)
radius of the high Earth orbit (HEO)
radius of Earth

aerodynamic reference area
time
velocity
thrust

inverse atmospheric scale height

flight path angle

heading angle

bank angle

down range angle or longitude

cross range angle or latitude

gravitational constant of Earth

density

orbital plane changes

characteristic velocity
subscripts
c subscript for circularization or reorbit
d subscript for deorbit
s : subscript for surface level

1. INTRODUCTION
In order to have a viable and affordable space program, advanced technology must be
exploited and new design concepts must be developed to reduce the size and cost of
transportation elements for supporting new mission requirements. One of the new

=
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concepts that has evolved in recent years to advance the cost effectiveness of space
transportation systems is the aerodynamically assisted orbit transfer. Such an orbital
transfer vehicle is designed with an aerodynamic configuration which can utilize the
planetary atmosphere for the purpose of energy management. Numerous studies
have demonstrated that the use of the aerobraking can significantly reduce the
propulsive velocity requirements for certain classof orbit transfers. Excellent review
papers were given by Warberg (Reference 1) and Mease (Reference 10).

In our earlier studies, the fuel optimal control problem arising in a typical nonplanar
orbit transfer from HEO to LEO as discussed in most recent publications was
addressed. As discussed in References 2 and 15, the aeroassisted orbit transfer
vehicle (AOTV) maneuver involves three phases with three propulsive burns or
impulses as sketched in Fig.l. The orbital plane change was assumed to perform
entirely inside the atmosphere with aeroassistance. Unlike References 2 and 15, the
more general formulation given in Reference 17 does not restrict the orbital plane
change to be performed entirely inside the atmosphere. In the first phase, the orbital
transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic
transfer orbit with a plane change at HEO and with the perigee inside the atmosphere.
In the second phase, the vehicle is inside the atmosphere and is optimally controlled
by the lift and bank angle modulations to perform another orbital plane change and to
satisfy the heating rate and other physical constraints. Because of the the energy loss
during the atmospheric maneuvers, an impulse is required to initiate the third phase to
boost the vehicle back to the final orbital altitude. Finally, the third impulse is applied
to circularize the orbit at LEO. Additional plane changes are allowed at the
atmospheric exit and the final orbit circulation. In summary, there are three propulsive
plane changes associated with three propulsive burns outside the atmosphere and an
aeroassisted orbital plane change inside the atmosphere. In Reference 17, simulation
results for the general formulation were obtained under the assumption that all

trajectories enter the atmosphere at the same (_e, _e, and 0e. In addition, simulation
results were compared with those obtained in Reference 2 and 15, where orbital plane
changes are performed entirely inside the atmosphere. These studies provided
necessary data base and essential information concerning the effective use of
aeroassisted orbital plane changes.

In this paper, the fuel optimal control problem arising in a typical coplanar
aeroassisted orbit transfer is addressed. The mission involves the transfer from high
energy orbit (HEO) to low enery orbit (LEO) without plane change, The basic
approach here is to employ a combination of propulsive maneuvers in space and
aerodynamic maneuvers inside the atmosphere. The aeroassisted orbital transfer
problem is formulated under the assumption that no orbital plane change is needed.
Similar to Reference 15 and 17, the basic sequence of events consists of three
phases but only two impulses are needed. In the first phase, the transfer begins with a
deorbit impulse at GEO which injects the vehicle into an elliptic transfer orbit with
perigee inside the atmosphere, in the second phase, the vehicle is optimally
controlled by lift and drag modulation to satisfy heating and other physical constraints
and to exit the atmosphere with the desired flight path angle and velocity so that the
apogee of the exit orbit is the altitude of the desired LEO. Finally, in the third phase,
the second impulse is required to circular the orbit at LEO. The optimal control
solutions were all obtained by using the Hermite polynomial and collocation technique
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to convert the optimal control problem into a corresponding nonlinear programming (
NP ) problem which is solved numerically using the optimization code, NZSOL ( cf.
Reference 12 ) provided by Gill, which is an improved version of NPSOL ( cf.
Reference 6 ), developed at Stanford. This solution method is different from the
indirect method such as those discussed in Reference 2,4,7 and 8. Simulation results
were then compared with those obtained earlier for different orbital inclination
changes in Reference 15 and 17. The details are presented and discussed here. In
this paper, simulation results were actually obtained for returns from geosynchronous
orbit (GEO) to space station orbit (SSO). It is important that in the future these
simulations be extended to include all other realistic flight constraints and to establish
baseline optimum trajectory characteristics for GEO to Space station or shuttle, lunar
and Mars missions.

2. DIRECT TRAJECTORY OPTIMIZATION WITH COLLOCATION AND
HERMITE POLYNOMIALS

In the direct collocation with nonlinear programming approach, the trajectory is
approximated by piecewise polynomials, which represent the state and control
variables at a number of discrete time points, i.e., nodes. For a given state variable,
the state trajectory over a given "segment" between two nodes is taken to be the
unique Hermite cubic which goes through the end points of the segments with the
appropriate derivatives that are dictated by the differential equations of motion at the
endpoints. This is the "Hermite cubic" since it is determined by the states and their
derivatives. A collocation is taken at the center of the segment where the derivative
given by the Hermite cubic is compared to the derivative obtained from the evaluation
of the equations of motion. The difference is termed the "defect" and is a measure of
how well the equations of motion are satisfied over the segments. If all the defects are
zero, then the differential equations are satisfied at the center collocation points as
well as at the endpoints. Figure 2 shows the typical defects between node 1 and node
2.

Let the system of equations of motion be given as
X' = f(X,U,D) (2-1a)

where X is the state vector, U is the control vector, D is the design parameter vector
and (') denotes the differentiation with respect to the time. Let the time over a given
segment be T. For the problems mentioned above, one can show that

X= (x, y, z, x', y', z', m)

U = ( CL,o )

D = (Ail, Ai2, &i3)

where design parameters are defined here as unknown constants ( i.e., three
propulsive plane changes ) to be determined by the optimizaton processes. Then the
Hermite interpolated x-component of the state vector X at the center point is

xc = (1/2) (Xl + Xr) + (T/8) [f(Xl,Ul) - f(Xr, Ur)] (2-2)
where xl and Xr are respectively the x-component of the state vector X at the left and
the right nodes. The derivative of the interpolating Hermite cubic at the center point is

Xc' = -3/(2T) (Xl - Xr)- (1/4) [f(Xl,U1)+ f(Xr, Ur)] (2-3)
The defect vector is then calculated as

d = f(Xc,Uc) - Xc' (2-4)
If xl, ul, xr, and Ur are chosen such that the elements of the defect vector, d, are
sufficiently small, the "Hermite polynomials" become an accurate approximation to the

(2-lb)

z
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solution of the differential equations of motion (by implicit integration). With the above
approach, the differential equations are converted into nonlinear algebraic constraint
equations and the optimal control problem can then be solved using the nonlinear
programming techques.

3. BASIC EQUATIONS FOR OPTIMAL AEROASSISTED ORBITAL
TRANSFER
The aeroassited orbital transfer can be analyzed in three phases, i.e., deorbit,
aeroassist (or atmospheric flight), boost and reorbit (or circularization). In each of the
phases, a particular set of equations of motion apply.

3.1 Deorbit

Initially, the spacecraft is moving with a circular velocity Vd = ._/Rd in a circular orbit

of radius Rd, well outside the Earth's atmosphere. Deorbit is accomplished at point D

by means of an impulse AVd, to transfer the vehicle from a circular orbit to an elliptic
orbit and with perigee low enough for the trajectory to intersect the dense part of the
atmosphere. Since the elliptic velocity at D is less than the circular velocity at D, the

impulse AVd is executed so as to oppose the circular Velocity Vd. In other words, at
point D, the velocity required to put the vehicle into elliptic orbit is less than the velocity

required to maintain it in circular orbit. The deorbit impulse AVd causes the vehicle to

enter the atmosphere at radius Ra with a velocity Ve and flight path angle "Ye. It is
known that the optimal energy loss maneuver from the circular orbit is simply the
Hohmann transfer and the impulse is parallel and opposite to the instantaneous
velocity vector.

After applying the deorbit impulse and before entering the atmosphere at Ra, the
deorbit trajectory is a coasting arc and known integrals of the equations of motion can
be used to relate the state vectors at Ra ,the entry into atmosphere to the state vectors
right after the deorbit impulse at Rd. Using the principle of conservation of energy and
angular momentum at the deorbit point D and the atmospheric entry point E, we get

Ve2/2-1_/aa = V12/2-t_/Rd (3-1)

R a Ve cos (-Te) = Rd V1 (3-2)

where Vl is the magnetude of the velovity right after the deorbit impulse AVd and from

the above equations we can solve for V1 and then compute _Vd to get

V,= _J21.L(1/Ra - 1/Rd)/[(ad/Ra) 2 /cos2"ye - 1]

and
AV,j = Vl

It is easily seen that the minimum deorbit impulse AVdm obtained for'ye = O,

corresponds to an ideal transfer with the space vehicle grazing the atmospheric

boundary. To ensure proper atmospheric entry, the deorbit impulse AVd must be

higher than the following minimum deorbit impulse _Vdm

(3-3a)

(3-3b)
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Vlm= t/2l_(1 / aa - 1/Rd) / [(Rd / aa)2 - 1]
(3-4a)

AVdm = Vd -Vlrn (3-4b)
Physically, the second term of the above equation corresponds to the apogee velocity
of an ellpitic transfer orbit with perigee radius Ra and apogee radius Rd. This elliptic
transfer orbit is tangent to the atmosphere boundary at perigee. It will be shown later
that the nonlinear constraint equations ( 3-15 ) at the atmospheric entry point can also
be derived from equations ( 3-1 and 2 ).

3.2 Aeroasslst

During the atmospheric flight, the vehicle can be optimally controlled by the lift and
bank angle modulations to achieve the necessary velocity reduction (due to the
atmospheric drag) and the orbital plane change if needed. In the present formulation,
only the aeroassisted atmospheric flight need be solved by using the collocation and
nonlinear programming techniques discussed earlier in this paper. The solutions in
the other phases are provided by the known integral relations of the equations of
motion because these arcs are coasting arcs.

Consider a vehicle with the point mass m, moving about a rotating spherical planet.
The atmosphere surrounding the planet is assumed to be at rest, and the central
gravitational field obeys the usual inverse square law. The equations of motion for the

psiny

vehicle are given by (Figure 1),
/'= Vsin?

t_= Vcosy cos
rcosG

$ = Vcosy sin_
r

= (TIT cosE-D)
m r2

+ _2r cosG (siny cosG- cosy sin_ sinG)

(3-5a)

(3-5b)

_, (TITsine+L)cosc I_COSy Vcos-y= - + _-2(0 cos_F cosG
mV Vr 2 r

(3-5c)

(3-5d)

(02 r cos G(cos Y cosG+sin? sin_ sinG)
+ V

= (TIT sin_+L)sino V cosy cos_" tang _-2_(tany sin_ cosG-sinG)
mV cos y r

(3-5e)

(02 r cos _Fsing cosG
+

V cosy

rh = -f(r,V, TI)

where for a given vehicle, the drag D and the lift L are

D =_.__S V2
2m p CD

(3-5f)

(3:5g)

(3-5h)

m
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S

L = _ p V2 CL (3-5i)

and the drag and lift coefficients obey the drag-polar relation

C O = CD O +KC 2 (3-5j)

Also, for an exponential atmosphere, one has

P = Ps exp (-HI3) and H = R- RE (3-5k)

Simulation results obtained here were using the U.S. standard Atmosphere 1976.

For aeroassisted orbital transfer problems considered here, one assumes that, inside
the atmosphere, the vehicle is optimally controlled by the aerodynamic forces only. It
is assumed that the thrust T is absent and the point mass is constant in this region.
Furthermore, no earth rotation was assumed. The later is equivalent to consider the
motion with respect to an earth fixed inertial coordinate system ( ECI ). The plane

change or the orbit inclination, L is related to the cross range _ and the heading angle

as

cosi = cos_) cos_ t e _<t < tf (3-6)

For coplanar orbital transfer problems considered here, the orbit inclination is
assumed to be constant throughout the atmospheric flight.

3.3 Boost and Reorbit
During the atmospheric flight, the vehicle is optimally controlled by the lift and drag
modulation to satisfy the heating constraints and to exit the atmosphere with the
desired flight path angle and velocity so that the apogee of the exit orbit is the altitude
of the desired LEO. Thus, no impulse is required at the exit from the atmosphere to
boost the vehicle back to the final orbital altitude at LEO. The vehicle exits the

atmosphere at point F, with a velocity Vf and the flight path angle 7f. The additional

impulse AVb, required at the exit point F for boosting the vehicle into an elliptic
transfer orbit with apogee radius R c is assumed to be zero and the reorbit (or

circularization) impulse AVc, required to insert the vehicle into a circular orbit are
obtained by using the principle of conservation of energy and angular momentum at
the exit point Fand the reorbit or circularization point C. Thus, we have

Vf2 / 2-_/Ra =V2 / 2-1_/ac (3-7)

Vf Ra cos'yf = Rc V3 (3-8)
where Vf is the velocity at the exit from the atmosphere and V3 is the velocity at the

reorbit point C just before the circularization burn AVc.

Solving for Vf and V3 from the above equations (3-7) and (3-8) yields

V2-_J2_(1/Ra-1/Ro)/[1-(R a/Rc)2COS 2 _{f] =0

V3=_/2g(1/Ra-1/Ro)/[(Ro/Ra) 2/cos27f -1]

and AVc can be computed as follows

aV b = 0

(3-9)

(3-10)

(3-11)
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AVc= Vc-V3 (3-12)

It is interesting to note that V3 is maximum for yf =0 and therefore the reorbit impulse

AVc ,is minimum for yf =0. It will be shown later that boundary conditions and nonlinear
constraint equations at the exit point F, can be derived in terms of the final orbit
characteristics and the final state vectors at the exit as shown in (3-16,17,& 18).

3.4 Performance Index

It is known that the change in speed, AV, also called the characteristic velocity, is a
convenient parameter to measure the fuel consumption. For minimum-fuel maneuver,
the objective is then to minimize the total characteristic velocity. A convenient
performance index is the sum of the characteristic velocities for deorbit, boost, and
reorbit, as

J = AVd + AVc

= &Vd(ad, All, Ve, Ye)+ &Vc (ac, Ai3, yf,Vf) (3-13)

Where, AVd and AVc are the deorbit, and reorbit characteristic velocities respectively,
and are given by (3-3, and 12) respectively. Note that for a given final circular orbit,

the impulse AVc are completely determined by the state variables Vf and yf at the exit
of the atmospheric portion of the trajectory. The velocity Ve and the flight path angle

Ye at the atmospheric entry point are dependent only on the magnitude of the deorbit

impulse ztVd. It follows that the optimal control problem needs to consider only the
trajectory segment within the atmosphere subject to the nonlinear constraints and
boundary conditions at the atmospheric entry and exit points. In addition, other path
constraints such as the peak heating rate have to be satisfied.

3.5 Boundary conditions and constraints
The boundary conditions and constraints for the optimal control problem can be
summarized as follows:

R=Ra ; Ye <0

t#e = 0, _e = 0,0e =0,

At the entry into atmosphere, the following initial constraints must be satisfied.

(3-14a)

(3-14b)

'_I1- ( Ra/2 c°$2 ('Ye)l - #I'la_._dd,) R-d1/=0
(3-15)

The first initial constraint is required to ensure the vehicle enters the atmosphere. The
second set of boundary conditions assumes that all trajectories enter the atmosphere

at the same q_e,_e and 0e. In the present formulation, the initial velocity and the flight
path angle are unknown and to be determined by the optimization processes subject
to the constraint equation (3-15).

• At the exit from atmosphere, the following constraints must be satisfied.

R=R a ; "yf >0 (3-16)
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IRa",V..__22I1_ R2 cos 2 p 1 11= 0
(3-17)

cos if = cos _f cos _'f = cos ie (3-18)

Equation (3-16) is required to ensure the vehicle exit the atmophere. The second

costraint (3-17) must be imposed to determine the correct Vf and yf if AVb, iS assumed
to be zero as in the coplanar case discussed here. The third constraint (3-18) is
required to ensure the orbital transfer is coplanar.

In addition, there are other path constraints ,i.e., constraints must be satisfied along the
trajectory such as stagnation point heating rate constraints, altitude constraints,
bounds on the control variables abd others

4. STRUCTURE AND SOLUTION OF THE NONLINEAR PROGRAMMING
PROBLEM

The direct collocation and Hermite polynomial procedures described above convert
optimal control problems into corresponding nonlinear programming problems.
Ordinary differential equations are converted into corresponding nonlinear algebraic
equations (or nonlinear "defects" constraint equations). These problems can then be
solved using nonlinear programming codes.

The variables for the nonlinear programming problem are the collected state vectors
and control vectors at the nodes and the time duration of phases. These quantities are
assembled into the NLP state vectors

XT = [xT,u T, ...... X T, UT , tl, t2 ...... tk ] (4-1 )
where n is the number of nodes and k is the number of phases on the trajectory. The
defects and other physical and mathematical constraints are collected into the NLP
constraint vector C

T T T.....dn .....wj] /.-21
where di is the defect vector and w is a vector of additional problem constraints.

The nonlinear programming code used here is the NZSOL (Reference 12). The
NZSOL is an improved version of the NPSOL (Reference 6), developed by the
Stanford Optimization Laboratory and designed to minimize a smooth nonlinear
function subject to a set of constraints which may include simple bounds on the
variables, linear constraints, and smooth nonlinear constraints The problem is
assumed to be stated in the following form:

NP

minimize F(x)
xER n

Ixlsubject to !<- ALX -< u,
Lc(x).J (4-3)

where the objective function F (z) is a nonlinear function, AL is an mL, X n constant
matrix of general linear constraints, and c(x) is an mN - vector of nonlinear constraint
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functions, the objective function F and the constraint functions are assumed to be
smooth, i.e., at least twice-continuously differentiable. (The method of NPSOL will
usually solve NP if there are only isolated discontinuities away from the solution).

Note that upper and lower bounds are specified for all the variables and for all the
constraints. This form allows full generality in specifying other types of constraints. In

particular, the i-th constraint may be defined as an equality by setting ti = ui. If certain

bounds are not present, the associated elements of l or u can be set to special values
that will be treated as - _ or +

Here we briefly summarize the main features of the method of NZSOL and NPSOL as
discussed in Reference 6 because Reference 12 is not available to general public. At
a solution of NP, some of the constraints will be active, i.e., satisfied exactly. An active
simple bound constraint implies that the corresponding variable is fixed _,t its bound,
and hence the variables are partitioned into fixed and free variables. Let C denote
the m x n matrix of gradients of the active general linear and nonlinear constraints.
The number of fixed variables will be denoted by nFX, with nFR (nFR = n - nFX) the
number of free variables. The subscripts "FX" and "FR" on a vector Or matrix will
denote the vector or matrix composed of the components corresponding to fixed or
free variables. The details are discussed in Reference 11.

A point x is a first-order Kuhn'Tucker point for NP if the following conditions hold:

(i)
(ii)

(iii)

x is feasible;

there exist vectors _ and _. (the Lagrange multiplier vectors for the
bound and general constraints) such that

g = cT _"+ _' (4-4a)

where g is the gradient of F evaluated at x, and _'j= 0 if the j-th variable
is free.
The Lagrange multiplier corresponding to an inequality constraint
active at its lower bound must be non-negative, and non-positive for
an inequality constraint active at its upper bound.

Let Z denote a matrix whose columns form a basis for the set of vectors orthogonal to
the rows of CFR; i.e., CFRZ = O. An equivalent statement of the condition in terms of Z
is

ZTgFR = 0 (4-4b)

The vector ZTgFR is termed the projected gradient of F at x. Certain additional
conditions must be satisfied in order for a first-order Kuhn-Tucker point to be a solution
of NP.

4.1 The Quadratic Programming Subproblem
Similar to NPSOL, the basic structure of NZSOL involves major and minor iterations.
The major iterations generate a sequence of iterates (Xk) that converge to x*, a first-
order Kuhn-Tucker point of NP. At a typical major iteration, the new iterate E is
defined by

m
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= x + o_p, (4-5a)

where x is the current iterate, the non-negative scalar o_is the step length, and p is the
search direction. Also associated with each major iteration are estimates of the
Lagrange multipliers and a prediction of the active set.

The search direction p is the solution of a quadratic programming subproblem of the
form

minimize gTp + lpTHp
P 2

su,,ectto
(4-5b)

where g is the gradient of F at x, the matrix H is a positive-definite quasi-Newton
approximation to the Hessian of the Lagrangian function and AN is the Jacobian
matrix of c evaluated at x.

The estimated Lagrange multipliers at each major iteration are the Lagrange
multipliers from the subproblem (and similarly for the predicted active set) and provide
information about the the sensitivity of these NLP problems.

Certain matrices associated with the QP subproblem are relevant in the major
iterations. Let the subscripts "FX" and "FR" refer to the predicted fixed and free
variables, and let C denote the m x n matrix of gradients of the general linear and
nonlinear constraints in the predicted active set. First, we have available the TQ
factorization (Reference 11) of CFR "

CFR QFR = (0 T), (4-6)

where T is a nonsingular m x m reverse-triangular matrix (i.e., t/j = 0 if i+j<m), and
the non-singular nFR x nFR matrix QFR is the product of orthogonal transformations.
Second, we have the upper-triangular Cholesky factor R of the transformed and re-
ordered Hessian matrix

RTR = HQ -=QT_Q, (4-7)

where H is the Hessian H with rows and columns permuted so that the free variables
are first, and Q is the n x n matrix

Q= ,

IFX (4-8)

with IFX the identity matrix of order nFX. If the columns of QFR are partitioned so that

QFR=( z Y), (4-9)

the nz (nz = nFR - m) columns of Z form a basis for the null space of CFR. The matrix

Z is used to compute the projected gradient ZTgFR at the current iterate.

As discussed in Reference 6 and 11, a theoretical characteristic of SQP methods is
that the predicted active set from the QP subproblem is identical to the correct active
set in a neighborhood of x'. In NPSOL, this feature is exploited by using the QP active
set from the previous iteration as a prediction of the active set for the next QP
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subproblem, which leads in practice to optimality of the subproblems in only one
iteration as the solution is approached. Separate treatment of bound and linear
constraints in NPSOL also saves computation in factorizing CFR and HQ.

4.2 The merit function
Detailed discussions of the merit function are given in Reference 14. In NZSOL and
NPSOL, once the search direction p has been computed, the major iteration proceeds

by determining a steplength oc that produces a "sufficient decrease" in the augmented
Lagrangian merit function

1
L(x,;L,s) = F(x)- T. _,i(ci(x ) - si) + _-_ pi(ci(x)- si) 2,

i i (4-10)

where x, Z and s vary during the line search. The summation terms involve only the

rl0n!inear gonstraints. The vector Z is an estimate of the Lagrange multipliers for the

nonlinear constraints of NP. The non-neaative slack variable {si} allow nonlinear

inequality constraints to be treated without introducing discontinuities. The solution of
the QP subproblem (4-5) provides a vector triple that serves as a direction of search for
the three sets of variables.

4.3 The quasi-Newton updated
Before going into the detailed discussions, it is important to point out that both the
NZSOL and NPSOL start by initializing the Hessian matrix H = Identity matrix. Thus at
the beginning, the search direction is in the steepest decent direction. No initial
curvature information is computed and the curvature information is accumulated
through the BFGS quasi-Newton updates. The matrix H in (4-5) is a positive-definite
quasi-Newton approximation to the Hessian of the Lagrangian function. At the end of
each major iteration, a new Hessian approximation H is defined as a rank-two
modification of H. In NPSOL the BFGS quasi-Newton update is used:

= H 1 HssT H + l____yyT,
sTHs y's

where s = _- x (the change in x).

(4-11)

Rather than modifying H itself, the Cholesky factor of the transformed Hessian HQ (4-
7) is updated, where Q is the matrix from (4-8) associated with the active set of the QP
subproblem. The update (4-11) is equivalent to the following update to HQ •

1 T
1 HQSQS_HQ + _yQyQ,

(4-12)

where yQ = QTy and so = QTs. This update may be exDressed as a rank-one

uDdate to R and is used to incorporate new curvature information obtained in the
move from x to E.

4.4 NZSOL, NPSOL 4.02, and NPSOL 2.1
For those who are interested in applying these NLP codes, there are two publised
versions of NPSOL. The NPSOL 4.02 was developed after the NPSOL 2.1 and
therefore more reliable and efficient algorithm were incorporated according to Gill (
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Reference 12 ). However, in updating the Cholesky factor, the NPSOL 4.02 updates
the whole or complete R while the NPSOL 2.1 updates only the part associated with
the Z-space or null space of R. For the problem formulated here ,usually several
hundred varibles are involved and the NPSOL 2.1 converges in less computing time.
The NZSOL (Reference 12) incorporates not only latest efficient and reliable algorithm
but also updates only the part of R associated with the null space of R only. In addition
to improve the algorithm of NPSOL, it also adopts the best parts of both NPSOL 2.1
and 4.02.

Finally, it may be interesting to point out that the matrices in the present formulation
using collocation and Hermite polynomial are large and fairly sparse. For
computational efficiency, it is important to incorporate NLP codes such as MINOS
(Reference 13) to take advantage of the special characteristic of the collocation
formulation discussed here.

5. NUMERICAL RESULTS AND DATA
The data used in the numerical experiments presented here (c.f. Reference 2 and 9)
are summarized as follows:

CDO=0.1 ; K=1.111 ; m/S=300kg/m 2 (5-1)
and the drag polar is

CD = CDO + K * CL 2 ( 5-2 )
and other useful data are

Pa = 1.225 kg / m3; p, = 3.986xl 014m 3 / sec 2

13 = 1 / 6900 m-l; RE = 6378 km

Ha = 120 km ( 5-3 )

Using the above mentioned data, simulations were carried out

For an AOTV returning from the geosynchronous orbit (GEO) to the space station orbit
(SSO), one has Rd = 42240 km and Rc = 6934 km. Simulation results were obtained
for the following parametric studies for different values of CLM.

a) Case 1 ( Reference Case ). For this reference case, simulation results were
obtained under the general formulation that no orbital plane changes are allowed at
deorbit, boost,and reorbit impulses and inside the atmosphere. This reference case
has the following entry and exit status

Entry status: He = 120 km; Ve = 10.315 km/sec

7e = -3.727 degrees; _e = 0; /lie = 0 ( 5-4 )

Exit status: Hf = 120 km; Vf = 7.952 km/sec

7f = 0.91 deg; _ = 0 deg

/1/f = 0 deg; total flight time = 769.25 sec (5-5)
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The characteristic velocities are 1489 meters per seconds and 132 meters per second
at the deorbit and the reorbit respectively. The total characteristic velocity is 1621
meters per second. The CLMax is assumed to be 3.0.

b) Case 2 : Simulation results were also obtained for the case where the maximum lift

coefficient is assumed to be 4.5. Similar to the reference case, no orbital plane
change is allowed. The entry and exit status are summarized as follows:.

Entry status: He -- 120 km; Ve = 10.3118 km/sec

"re -- -3.576 degrees; Ce = 0; _e = 0 ( 5-6 )

Exit status: Hf = 120 km; Vf -- 7.9518 km/sec

yf - 3.576 deg; _ = 0 deg

_f = 0 deg; if = 0 degree, total flight time - 673.38 sec

(5-7)

The deorbit characteristic velocity is 1488.91 meters per second and the recirculation

characteristic velocity is 131.61 meters per second. The total characteristic velocity is
1620.517 meters per second. It is interesting to observe that all the characteristic
velocities are almost the same as those obtained in case 1.

c) Case 3 : Similar to Case 2, the optimal control solution has a maximum lift

coefficient of 2.3 and has the following entry and exit status.

Entry status: He = 120 km; Ve = 10.3115 km/sec

Ye = -3.814 degrees; Ce = 0; _'e = 0 ( 5-8 )

Exit status: Hf = 120 km; Vf = 7.9515 km/sec

yf = 0.917 deg; _ = 0.deg; if = 0.0 deg

_f = 0.0 deg; total flight time = 857.34 sec (5-9)

d) Case 4. Similar to Case 2, the optimal control solution has a maximum lift
coefficient of 0.9 and has the following entry and exit status.

Entry status: He = 120 km; Ve = 10.3117 km/sec

Ye = -4.154 degrees; _e = 0; _e = 0 (5-1o)

Exit status: Hf = 120 km; Vf = 7.9509 km/sec

"f'f= 0.954 deg; _ = 0.deg; if = 0.0 deg

_f = 0.0 deg; total flight time = 1450.67 sec (5-11)

Again, all the characteristic velocities associated with the deorbit, and reorbit impulses
for Case 3 and Case 4 are almost the same as Case 1 and Case 2.

Time histories of altitude, velocity, flight path angles,ift coefficient, lift to drag ratio,
dynamical pressure, atmospheric density and heating rate for all three cases ( Case 1,
2, & 3.) are shown in Figure 3-10. It is important to point out that for the vehicle

r

m
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considered here, the maximum lift coefficient is 0.9. However, for the simulation
results shown here, the maximum lift coeffient is set to be less than 4.5 for paramatric
studies.

An interesting observation from the simulation results as shown in Figs. 3 to 10 is that
although the total characteric velocity is insensitive to the variation of the maximum lift
coefficient, the optimal trajectory is very sensitive. The higher the maximum lift
coefficient is the less the vehicle penetrates into the atmosphere and the less the time
of flight is needed. The vehicle was flying at the maximum lift coefficient in contrast to
previous simulation where the vehicle was flyiny at the maximum lift to drag ratio as
shown in Reference 15 and 17. Simulation results shows that for the coplanar orbital

transfer the vehicle has only to penetrate the atmosphere deep enough to reduce the
exit velocity so that the vehicle will exit the atmosphere at the desired velocity and
filght path angle so that the apogee of the exit orbit is the altitude of the desired final
LEO.

The heating rate Qr, along the atmospheric trajectory, is computed for the stagnation
point of a sphere of radius of one meter, according to the following relation
(Reference 2 and 6)

Qr = Kr p0.5 V3.08 ( 5-12 )

where the p is the atospheric density in kg/km3, V is the velocity in km/sec and the Kr is
the proportionality constant equal to 0.000308. The time history of heating rates for the
reference case ( Case 1 ), Case 2, Case 3, and Case 4 were shown in Fig. 6. These
simulation results presented provided enough information that the peak heating rate
for coplanar case will be much less than those for cases aeroassisted orbital plane
changes are made. As shown in References 15 and 17, one needs less thermal
protection materials and more fuel consumption to fly the heat constrained trajectories
and therefore by taking into account the weight of thermal protection materials one
may find an optimal design to minimize the total vehicle weight.

Another interesting observation from previous simulation results ( cf. Reference 15 and
17 ) is that for given HEO and LEO, the deorbit impulse is almost the same for all the
cases simulated here. The total characteristic velocity for a given optimal trajectory is
almost completely determined by the boost and the recirculation. In fact, the boost
velocity contributes the most to the variation of the total characteristic velocity.
Physically, it is obvious as the vehicle makes a larger turn it also loses more energy
and therefore needs more velocity to boost it back to the final orbital altitude. Although
the total characteristic velocity is insentive to the magnitude of deorbit impulse, the

optimal trajectory is very sensitive to AVd. In the coplanar aeroassisted orbit transfer
here, the boost impulse is not needed and the deorbit and recirculation impusles are
almost the same for all the cases simulated here. Thus the total characteristic velocity
is not sensitive to the variation of the maximum lift coefficient. However, the depth of

penetration was shown as a function of the maximum lift coefficients.

6. CONCLUDING REMARKS
An excellent survey of the subject was given in Reference 1. Walberg reviewed the

problem of optimal aeroassisted orbital transfer with plane change. In a recent paper
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by Naidu (c.f. Reference 2), fuel optimal trajectories of ae[oassisted orbital transfer with
plane change were presented using the so-called multiple shooting method for the
case without heating rate constraints and under the assumption that all the plane
change was performed entirely in the atmosphere. A brief review of the progress
made in this field was also given in Reference 2. In Reference 15, a similar problem
for cases with and without peak stagnation point heating rate constraints was solved
using the collocation and nonlinear programming technique. This method is
especially suitable for parametrical studies because of its relative insensitivity to initial
guesses.

In Reference 17, simulation results were obtained under a more general formulation
that not all the orbital plane changes are made in the atmosphere. It must be noted
that the AOTV transfer can be made more efficient propulsively if the plane change is
performed partly in the atmosphere and partly in space and the propulsive plane
change in space is subdivided into components associated with various impulsive
points. All these plane changes were automatically determined by the optimization
processes discussed in Reference 17

The above studies provided necessary data bases and essential information
concerning how to use and how to combine the propulsive and aeroassited orbital
plane changes effectively. In this paper, another group of problems under the
assumption no orbital plane change is allowed are investigated. In fact, the present
investigation is closely related to the problem of returning from GEO to space station
assuming all plane changes are made propulsively outside the atmosphere. As
discussed, the charateristics of the flight is quite different from the cases where the
orbital plane changes are made inside the atmosphere. In the latter case, the vehicle
has to penetrate deeper into the atmosphere to perform the the desired orbital plane
change. On the other hand, for the coplanar case, the vehicle needs only to penetrate
the atmosphere deep enough to reduce the exit velocity so that the vehicle cn be
capture at the desired LEO.

It should be mentioned that the collocation and nonlinear programming technique
discussed here was recently applied to another group of orbital transfer problem by
Enright and Conway in Reference 3 and the relative insensitivity of this method to the
initial guesses was also observed by them. Our basic simulation test bed is the OTIS
codes ( Reference 5 ) with an improved and updated nonlinear programming code
(NZSOL). All physical models used were documented in Reference 5. Of course,
necessary modifications and corrections have to be incorporated to simulate the
aerobraking problems discussed here.

It may be worthwhile mentioning that the present problem was actually solved by
guessing the initial state and control varibles at four selected points, i.e., the initial
point, the final point and two other nodal points along the trajectory inside the
atmosphere. The initial state and control variables at other nodes or grid points were
simply obtained by linear interpolation. These initial guesses do not have to satisfy
either the governing equations or the nonlinear constriants including the defects. Only
rough guesses are needed at these four points. Converged solutions were obtained
with relative ease. Once a converged solution is obtained, optimal solutions for other
cases with differenet inclination changes or different peak heating rate constraints can
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be obtained using this converged solution as initial guesses. However, it is important
to point out proper scaling of the defects, constraints and variables are essential to get
converged solutions. For simulations discussed here, converged solutions were
obtained by using as little as 50 nodes. However, in some cases, converged solutions
were obtained using 100 nodes. As far as we know, this may be the first time
converged soultions were obtained for so many independent variables and nonlinear
constraint equations. This also illustrates how powerful the nonlinear programming
code and the collocation and Hermite polynomial technique are.

Finally, it is important to mention again that aeroassisted orbital transfer introduces a
strong coupling between the vehicle design and the trajectory design as indicated by
the simulation data. A trajectory that minimizes fuel mass, without attention to heating,
may require the vehicle to have heavy thermal protection systems. As shown here,an
optimal design for the total vehicle weight may be obtained as discussed earlier.
However, if the aeroassisted transfer is to be prefered to all propulsive transfer, it must
offer a reduction in fuel mass greater than the increase in thermal protection mass.
As far as minimum fuel is concerned, the reference cases investigated in Reference 17
provided more fuel savings as expected. But for the over all trade-off studies, the peak
heating rate, dynamical pressure, maximum g forces, and fuel mass have to be
considered. May be, it is also important to point out that the problems investigated
here is to assume that all plane changes are propulsive and outside the atmosphere
and that the aeroassisted atmospheric flight is planar. This case is most beneficial
from the thermal protection point of view and must be considered in the over all trade-
off studies.
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Propellant-Remaining Modeling
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ABSTRACT

A successful satellite mission is predicated upon the proper maintenance of the

spacecraft's orbit and attitude. One requirement for planning and predicting the

orbit and attitude is the accurate estimation of the propellant remaining onboard the

spacecraft. For geosynchronous satellites, a precise propellant-remaining estimation

is of particular importance. Twenty kilograms (kg) of propellant can add a year to the
operational lifetime of a satellite such as the Geostationary Operational Environment

Satellite (GOES)-I. Moreover, the geosynchronous ring is becoming cluttered with

propellant-depleted satellites; therefore, an extra 3 to 4 kg of fuel may be required to

deorbit an expiring satellite out of the geosynchronous ring. For GOES-I, which is

loaded with over 670 kg of oxidizer and over 420 kg of fuel, accounting for 20 kg of

propellant requires accuracy in propellant-remaining estimation of within 2 percent.

Budgeting for the 3 kg of propellant at the end of the mission requires a method with
an accuracy of within 0.5 percent.

This paper focuses on the three methods that were developed for calculating the pro-

pellant budget: in particular, the errors associated with each method and the uncer-

tainties in the variables required to determine the propellant remaining that

contribute to these errors. Based on these findings, a strategy will be developed for
improved propellant-remaining estimation. The first method is based on Boyle's law,

which relates the values of pressure, volume, and temperature (PVT) of an ideal gas.

The PVT method is used for both the monopropellant and the bipropellant engines.

The second method is based on the engine performance tests, which provide data that

relate thrust and specific impulse (Isp) associated with a propellant tank to that
tank's pressure. Two curves representing thrust and specific impulse as functions of

pressure are then generated using a polynomial fit on the engine performance data.
The third method involves a computer simulation of the propellant system. The pro-

pellant flow is modeled by creating a conceptual model of the propulsion system con-

figuration, taking into account such factors as the propellant and pressurant tank

characteristics, thruster functionality, and piping layout.

Finally, this paper presents a thrust calibration technique that uses differential cor-

rection with the computer simulation method of propellant-remaining modeling.
Thrust calibration will provide a better assessment of thruster performance and

therefore enable a more accurate estimation of propellant consumed during a given
maneuver.
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1. METHODS OF COMPUTING PROPELLANT REMAINING

Introduction

Before presenting the detailed descriptions of the propellant estimation methods, a brief introduction

on the propulsion system ope_'ation during a spacecraft mission is in order.

For the liquid propellant/gas pressurant system considered in this paper two modes of operations are

feasible: blowdown and pressure regulated. In blowdown mode, the propellant tank is pressurized by
the gas pressurant and then during the mission the propellant tank pressure is allowed to decay as

propellant is "blown out" of the tank when the thrusters are firing. In pressure regulated mode, the

propellant tank pressure is maintained constant by supplying additional pressurant gas into the pro-

pellant tank during the thruster firing. The advantage of the pressure regulated mode is the constant

propellant flow rate which is necessary to maintain in a bipropellant type engine to ensure constant
mixture ratio for optimum thruster performance (see Section I, Method 1).

The propellant estimation methods described here can be used to model an engine operating in both

blowdown and pressure regulated mode, blowdown mode only, and pressure regulated mode only
(Methods 1, 2, and 3 respectively).

Two phases of the mission are mentioned in this paper: the transfer orbit phase --when the satellite is

maneuvered to achieve mission orbit; and the station keeping phase--when the satellite is maneuvered

to maintain the mission orbit. For GOES-I, 86 percent of the propellant is used during the transfer

orbit phase (NASA phase). GRO on the other hand is inserted into the mission orbit by the launch
vehicle; therefore, ideally, 100 percent of propellant is used for station keeping and controlled reentry.

Method 1" Pressure, Volume, Temperature

The PVT method is based on an assumption of ideal gas behavior of the pressurant gas. Since the

pressurant gas is helium, the ideal gas approximation is valid. Boyle's law is then used to estimate the

propellant remaining based on the amount of pressurant that was forced into the propellant tank. The
procedure is as follows:

Suppose that the volume of propellant displaced from the tank is equal to the volume of pressurant

forced into the tank, given that pressurant and propellant do not mix and that the tank volume does not

change. Then,

dMf = rhof'dVHe,f (1-1)

where dMf = propellant forced out of the tank

rhof --- propellant density
dVHe,f = volume of pressurant forced into the tank

Using Boyle's law to compute the pressurant volume and writing the propellant density as a function of

tank temperature, we have

R "dMHe "ZHe" THe (1-2)
dVHe'f = PHe

R = pressurant (helium) gas constant

dmHe = mass of pressurant forced into the propellant tank

ZHe = pressurant compressibility

THe = pressurant temperature

PHe = pressurant pressure

where
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and

rhof = b0 + bl'T + b2"T 2 (1-3)

where T = propellant tank temperature

b0, bl, b2 = propellant density coefficients

Since pressurant and propellant are in the same tank and do not mix,

and

THe = T

PHe -- P - Psat

(1-4)

(i-5)

where P = propellant tank pressure

Psat - propellant saturation pressure

Propellant saturation pressure may be expressed as a function of temperature, T,

Psat = 10 (a°-a'fr-ad'r2) (1-6)

where a0, al, a2 = propellant saturation pressure coefficients

Pressurant compressibility may be expressed as a function of pressurant pressure, PHe, and tempera-
ture, THe,

ZHe = 1 + PHe'[fl + F'(T-Ts)] (1-7)

where fl, F = pressurant compressibility coefficients

T s = pressurant standard temperature

The expression for propellant used may then be rewritten as a function of tank pressure and tempera-

ture and the mass of pressurant forced into the propellant tank,

(1-8)

The accuracy of the propellant estimation using this method is only as good as the certainty in the

values of P, T, and dMHe. The uncertainty in the tank pressure and temperature is based on the ratings

of the pressure transducers and the temperature sensors, as well as the telemetry signal resolution. The

uncertainty in the pressurant mass forced into the propellant tank can be considered at most as great

as the uncertainty in the pressurant mass leaving the pressurant tank (assuming there are no leaks),

which is a function of the loading conditions and the telemetry readings of the pressure and tempera-

ture of the pressurant tank.

Since pressurant gas behaves as an ideal gas, Boyle's law applies as follows:

Po" Vo PHe 'VHe
= (1-9)

mo ' ZHe,o ' To mile " ZHe " THe
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where Po = loadingpressuranttank pressure
To = loadingpressuranttank temperature
Vo = loadingpressuranttankvolume
mo =, loadingpressurantmass
ZHe,o =- loadingpressurantcompressibility
PHe = pressurant tank pressure

THe = pressuranttank temperature

VHe = pressurant tank volume

mile = pressurant mass

ZHe = pressurant compressibility

Using the fact that pressurant tank volume is a function ofpressurant tank pressure and temperature,

Vo = Vh + ql " (Po - Ph) + q2 " (To - Tn) (1-10)

Vile = Vh + ql " (PHe - Ph) + qz " (THe - Th) (1-11)

where Vh = standard pressurant tank volume

Ph - standard pressurant tank pressure

Th -- standard pressurant tank temperature

ql = pressure coefficient

q2 = temperature coefficient

and the fact that compressibility is also a function of tank pressure and temperature, Equation (1-7),

the amount of pressurant forced into the propellant tank may be expressed as follows:

dMHe =mo- mile (1-12)

or

dMHe
=mo'{1

PHe " To

Po " THe

Vh + q l" (PHe- Ph) + q2" (THe- Th)

Vh + qx'(Po-Pn) + q2"(To-Th)

1 + Po'La + r" (To-T,)]
+ + r (THe- Ts)] J

(1-13)

The error in propellant estimation may be expressed in terms of the uncertainties in propellant tank

temperatures and pressures obtained from telemetry and the uncertainty in the pressurant mass
forced into the propellant tank. Therefore, the error in propellant estimation due to these variables
can be defined in standard fashion as

Errorp - (5 (dMf) . Puncertainty (1-14a)
(P)

ErrorT - d (dM0 . Tuncertainty (1-14b)
6 (T)
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6 (dMf) ' dMHeuncer_ainty (1-14c)
ErrordMHe -- (5 (dMHe)

The uncertainty in pressurant mass can be expressed as la error in the pressurant mass due to the

uncertainties in the pressurant tank loading conditions and telemetry uncertainty in pressurant tank

pressure and temperature:

dMHe_..am_ = ¢/(Errorpm)2 + (Error_,) 2 + (Errorpo) 2 + (Errorro) _ + 0Error_o) 2 (1-14d)

where

6 (dMHe)

ErrorpHe - 6 (PHe) PHeuncertainty (1-14e)

6 (dMHe)

ErrorTHe = 6 (THe) THeuncertainty (1-140

6 (dMHe)

Errorpo - (5 (Po) " Pouncertainty (1-14g)

(dMHe)

Errorro - (5 (To) ' T°uneertainty (1-14h)

fi (dMHe)

Errormo - (5 (mo) • mOuncertainty (1-14i)

Blowdown mode operation may be simulated by assuming that there is no change in pressurant mass

in the propellant tank (i.e., pressurant tank is shut off). Then, the propellant remaining becomes a

function of the propellant tank pressure and temperature change where dMHe -- constant.

In a bipropellant propulsion system such as the one in GOES-I, the pressurant forced into a given tank

is a function of the split ratio (the ratio of pressurant mass forced into the two tanks) as well as a
function of the pressurant mass leaving the pressurant tank. The split ratio is, in turn, a function of the

pressures and temperatures of the two propellant tanks and the mixture ratio (the ratio of the mass

flow rates of the two propellants). The pressures and the temperatures are obtained from telemetry';

the mixture ratio is defined by the manufacturer to ensure the optimum thruster performance. The

expression for the split ratio in terms of the above quantities is derived as follows:

dMHel
Split Ratio - (1-15)

dMHe2

where dMI-Iel = mass of pressurant forced into propellant tank 1

dMHe2 = mass of pressurant forced into propellant tank 2

Combining Equations (1-1) and (1-2) and introducing subscripts to distinguish between the two pro-

pellant tanks,

dMfl - rhofl • R" ZHel " THel (1-16a)
dMHel PHel
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and

dMf2 R • Erie2' THe2
= rhor2 _ (1-16b)

dMHe2 PHe2

Then, using the definition of the mixture ratio (MR) and Equations (1-3) and (1-7) for propellant densi-

ties and pressurant compressibility, respectively,

Split Ratio = MR" bfo + bfl" T2 + bf2" T2 2 PH¢I THe2
boo + bol " T1 + bo2 " T12 PHe2 THel

1 + PHe2 " [fl + F'(T2- T0I

1 + PHel " [fl + r.(T1 - Ts) ]

(1-17)

where pressurant partial pressure can be expressed in terms of the pressure and temperature of the

propellant tank using Equations (1-5) and (1-6). Then the pressurant forced into either propellant tank

as a function of the total pressurant leaving the pressurant tank and the split ratio is

dMHel = dMHe " Split Ratio (1-18a)
(Split Ratio + 1)

1
dMHe2 = dMHe" (1-18b)

(Split Ratio + 1)

Therefore, the set of error equations (Equation (1-14)) for a given propellant tank (1 or 2) must be

expanded to include the errors in pressurant mass forced into the propellant tank due to the uncertain-

ties in the mixture ratio and the uncertainties in pressure and temperature of the other propellant tank

in the system. That is,

Errorvl - d_(dMHe)
6(P 1) P 1uncertainty (1-19a )

ErrorT1 - 0(dMH¢)
d(T1) " Tluncertainty (1-19b)

Errorp2 - d(dMHe)
6(P2) " P2uncertainty (1-19c)

ErrorT2

ErrorMR

_ _5(dMHe)

d(T2)

_ d(dMHe)

6(MR)

T2uncertainty (1-19d)

" MRuncertainty (1-19e)

r

m
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The la

dMHe_ - [(Errorp..) 2 + (Errorru.) 2 + (Errorpo) 2 +

+ (Errorp,) 2 + (Errorr,) 2 + (Errorn) _

error in pressurant forced into a given propellant tank then becomes

(Errorro) 2 + (Errormo) _

+ (EfforT9 _ + (ErrorMRy] '/_

Using the data for the GOES-I propellant system operating in pressure regulated mode as an example:
given nominal operating propellant tank pressures and temperatures (indexes 1 and 2 indicate the

oxidizer and the fuel tanks, respectively) of _

P1 = P2 = 230 psi T1 = T2 = 20* C

and pressurant tank loading mass, pressure, and temperature

Po = 3300 psi To - 21" C mo = 2.54 Ibm

and assuming the operating pressurant tank temperature remains constant

THe = To

the pressurant tank pressure at the end of NASA phase is reduced to

PHe = 200 psi

and the optimum mixture ratio as supplied by the manufacturer is

MR = 1.610

Assuming that there are no uncertainties in loading conditions of the pressurant tank and mass, the

partials are computed to be

6(dM0 - 1.4 Ibm/psi 6(dM0 _ 0.57 Ibm/* K 6(dMf) - 339.5
6(P2) 6(T2) 6(dMHe2)

The partials to compute the uncertainty in pressurant mass forced into the fuel tank are

6(dMHe2) = -0.0004 Ibm/psi 6(dMHe2) _ +0.003 Ibm/* K
6(Pne) 6(THe)

b(dMHe2) _ 0.002 Ibm/psi 6(dMHe2) _ + 0.002 Ibm/* K
6(P1) 6(T1) .

6(dMHe2) _ + 0.002 Ibm/psi cS(dMHe2)
_(P2) _(T2)

- -0.001 Ibm/* K

6(dMHe2) _ 0.3 Ibm

6(MR)
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Theuncertaintiesin pressureandtemperaturedueto thetelemetryresolutionare

Pluncertainty(telem)= 4- 0.4 psi Tluncertainty(telem) = + 1.0 ° K

P2uncertainty(telem) = ::k 0.4 psi T2uncertainty(telem ) = + 1.0" K

PHeuncertainty(telem) -- "at- 0.4 psi THeuncertainty(telem) = 4- 1.0" K

The uncertainty in pressure due to the transducer accuracy and the resulting total root-mean-square

uncertainty in pressure readings are

Pluncertainty(trans ) = -1- 1.35 psi Pluncertaint3(tot) = + 1.41 psi

P2uncertainty(trans) = 4- 1.35 psi P2uncertainty(tot ) = 4- 1.41 psi

PHeuncertainty(trans) = -I- 1.35 psi PHeuncertainty(tot) = + 1.41 psi

The uncertainty in the mixture ratio as supplied by the manufacturer is

MRuncertainty = + 0.024

Thus, the errors in fuel used associated with the resulting uncertainties in the fuel tank pressure, tem-

perature, and amount of pressurant forced into the fuel tank ( 3or error in pressurant forced into the
fuel tank is _ 0.027 Ibm) are

Errorv2 = 2.0 Ibm ErrorT2 = 0.57 Ibm ErrordMHe = 9.17 Ibm

This shows that the fuel-used estimate for the GOES-I spacecraft in the pressure-regulated mode has a

3o" uncertainty of -_+28.2 Ibm. Thus, given a 911.6 Ibm estimated fuel usage, the relative error in fuel-

remaining estimation is 3.1 percent.

Method 2: Thrust and Specific Impulse Performance Data

This section presents the mathematical argument for the thrust and specific impulse (Isp) curves

method of computing the propellant consumed from a tank during a specified time interval. These

curves describe thrust and Isp as functions of pressure and temperature. The method assumes that the

propellant system behaves according to the thrust and Isp performance curves derived through empir-
ical testing of the propellant system. The equations to describe these curves are derived through poly-
nomial fitting and take on the following form when the first three terms of the polynomial are used:

r T ]c3+c4"PF = cO + cl • P- c2" p2. . (1-20)

F T ]d3+d4"P

Isp = d0 + dl" P- d2" p2. L (1-21)
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where F = thrust

Isp = specific impulse
P = propellant tank pressure

T = inlet propellant temperature

Tre f = inlet propellant temperature at which the data were taken

cO, cl, c2, c3, c4 --- thrust polynomial coefficients

dO, dl, d2, d3, d4 = Isp polynomial coefficients

(Note that if T and Tref are equal, then thrust and Isp are functions of tank pressure only.)

Given thrust and Isp, the propellant flow rate is easily determined:

d_ "- F/Isp (1-22)

where 69 = propellant flow rate.

The propellant mass escaping the tank during a certain time period is

tl
t'

= / d_ • dtdMf (1-23)
,J

tO

where dt = time period.

Substituting Equations (1-20) and (1-21) into Equation (1-22), integrating with respect to pressure and

temperature, dividing by the change in pressure and temperature to obtain the average flow rate, and

then substituting into Equation (1-23), we find that

dMf =I tl
tO

PI I_l & dT
P0 TI-T0 dP

dt
P1 - P0

(1-24)

where Pt0 = tank pressure at tO

Ptl = tank pressure at tl

Tt0 = tank temperature at tO

Tti = tank temperature at tl

Note that when there is no change in temperature or pressure in a given time interval, the flow rate is

constant with respect to that variable over this time interval, and therefore, the integration step with
respect to the unchanging variable should be omitted.

Since thrust and Isp method depends on tank pressure variation, it is meaningful to use this method
only in the blowdown mode of operation when a significant change in tank pressures can be observed.

The errors associated with this method are inherent to the instruments used in deriving thrust and Isp
data points, as well as the data regularity required to produce a close polynomial fit. Assuming that

thrust and Isp are well-behaved functions and that the instruments used to take the data are extremely
accurate, the error in determining the propellant flow rate is then a function of uncertainties in the

burn start and stop time and of the uncertainties in tank pressure and temperature at burn start and

stop time.
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d (dMf)

Errorpo = 6 (P0) P0uncertainty (1-25a)

Errorp1 = (5 (dMf) . Pluncertainty (1-25b)
, d (P1)

(dMf)

ErrorTo - d (TO) T0uncertainty (1-26a)

6 (dMf)

ErrorT1 ---- d (T1) Tluncertainty (1-26b)

d (dMf)

Errort0 - 6 (tO) t0uncertainty (1-27a)

Errortl - d (dMf)
•.d (tl) tluncertainty (1-27b)

The following example for the Gamma Ray Observatory (GRO) satellite, which operates in blowdown
mode, shows the calculations of the fuel used from a tank given that tank's pressures at start and end of
burn and the burn duration.

Using GRO main satellite thrusters performance coefficients and assuming that the tank temperature

remains the same as the reference temperature during which the curves data were taken:

F = (3.3502 Ibf) + (0.39898 lbf/psi) • P - (0.0001463 lbf/psi 2) • p2

Isp = (222.52 s • g) + (0.064329 s • g) ' P - (0.0000672 s • g) • p2

where the units of thrust and Isp coefficients are as appropriate, and, given a 2-minute ascent maneuver
and propellant tank pressures at the start and end of the maneuver of

dt = 120 sec

P0 = 400 psi

P1 = 334 psi

the partials are computed to be

6(dM0 _ 0.072 lbm/psi
d(PO)

6(dMf) - 0.548 lbm/sec
6(tO)

6(dMf) _ 0.071 lbm/psi
6(P1)

5(dMO _ 0.548 lbm/sec
6(tl)

=

C
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Theuncertaintiesin pressureandtime dueto thetelemetryresolutionare

POuneenainty= 4- 3.0 psi t0uncenainty _ + 0.256 sec

Pluncenainty = 4- 3.0 psi tluncertainty = 4- 0.256 sec

This shows that the fuel-used estimate from a GRO tank during an ascent maneuver has a 3a uncer-

tainty of -+.1.1 Ibm. Thus, computing that the total fuel used during the ascent from that tank is

65.8 Ibm, the relative error in the fuel-remaining estimation is 1.7 percent. Note that this method is an

approximation that relies on engine performance to follow the curves obtained during ground testing.

Method 3: Conceptual Model of the Propulsion System

A conceptual model of the propulsion system involves creating a schematic representing the layout of

the propellant piping, tank, and thruster configuration. Then a set of mathematical expressions must
be developed to describe the physics of this system, using the data obtained from the manufacturers on

such system characteristics as the flow resistance through the piping, characteristic propellant velocity

and thrust coefficients for all thrusters, the throat areas of the thrusters, and the temperature and

pressure of the tanks. A good example of the development of such a model is the GOES-I bipropellant

system model.

The GOES-I propellant system consists of a pressurant tank, a fuel tank, an oxidizer tank, one main
satellite thruster (MST), and 12 attitude and orbit control thrusters (AOCT) arranged in strings A and

B, each containing six AOCTs.

A model representation of the bipropellant system consisting of only one thruster (e.g., the MST) may

be used to derive the following set of governing equations representing the physics of the system (Fig-
ure 1):

(1-28a)

(1-28b)

F = AtCfPc (1-28c)

where

X Kf
At
A,B

Po
Cr

Pf

F -- (¢bo + (hr)Isp (1-28d)

F = A + B'IsP (1-28e)

= line resistances (oxidizer)

= line resistances (fuel)

= throat area

= coefficients in Equation (1-28e)

= oxidizer tank pressure
= orifice coefficient

= fuel tank pressure
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_...,__...._ 1O0-LBTHRUSTER (MST)

"7.

v

Figure 1. Schematic of the Simplified Bipropellant System Containing Only
the Main Satellite Thruster

thf = fuel flow rate

_bo = oxidizer flow rate

Pc "_ chamber pressure
F = thrust

Isp -" specific impulse

This simple model can then be expanded to include the entire system. The conceptual model repre-

senting the system functionalities is shown in Figure 2.

Using the conceptual model in conjunction with the propellant system's physical constants, a set of

governing equations relating propellant flow rates and thruster chamber pressure can be derived for
each of the 13 thrusters in the same manner as for MST.

Then the mathematical representation of the functionality of the whole system is accomplished in

combining the above equations for AOCTs and MST by applying a physical constraint of propellant
flow continuity inherent to the system. That is, propellant mass flowing into a junction is equal to

propellant mass flowing out of that junction. For example

r-bet = &f + (-bfa + &tB (1-29)

Solving the system of equations described abm, e will give the propellant flow rates through each

thruster and the chamber pressure of each thruster. Propellant used due to each thruster is then the

product of the flow rate and thruster on time. The propellant remaining may also be calculated by

using the chamber pressure in the thrust and Isp performance data curves for each thruster.

L-
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Figure 2. Conceptual Schematic of the GOES-I Propulsion System

Currently, this model is used for propellant estimation in pressure regulated mode of operation. How-

ever, by solving the system of equations for each new pressure reading in the propellant tanks, this

model may be used for propellant estimation in blowdown mode.

The uncertainty in the conceptual model method comes mainly from the error in the flow resistance
and thruster coefficients, tank pressure and temperature, and thruster on time. Also, there is added

error in any method chosen to solve the system of nonlinear equations.

The error due to the method of solving the equations is simply the smallest tolerances of the variable

under which the method converges to a solution. The error due to flow resistance and thruster

coefficients, tank pressure, and temperature is determined by adding maximum error to these vari-

ables and then solving the equations to see the amount by which the solution under maximum error
deviates from the nominal solution obtained by using nominal values of these variables. The error due

to time uncertainty is simply the product of the time uncertainty and the computed propellant flow
rate.

The following is an example of error in GOES-I MST _ring in pressure regulated mode propellant-
used prediction as computed by the bipropellant engine model using nominal propellant flow

resistance and thrust coefficients as supplied by SS/Loral and assuming nominal tank pressures and

temperatures

Ko = 110.713 lbf' s2/lbm ' in 5 Kf = 190.944 lbf" s2/lbm ' in 5

CF 1.865 Po = Pf = 230 psi To = Tf = 21.3" C
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andbasedonthefollowinguncertainties:uncertaintyin fuelandoxidizertankpressuresdueto trans-
duceraccuracyand telemetryresolution(total pressureuncertaintyis root-mean-squaredof these
two);uncertaintyin temperaturesdueto telemetryresolution,

Puncertainty(telem) = -1- 0.4 psi Tuncertainty = + 1.0" K

Puncertainty(trans) - 4- 1.35 psi Puncertainty(tot) " 4- 1.41 psi

and uncertainty in MST propellant flow resistance (Ko and Kf) and thrust (CF) coefficients as given by

SS/Loral (Reference 1)

Kouncertainty

Kfuncertainty

CFuncertainty

= + 0.541 lbf" s2/lbm " in 5

= + 2.583 lbf' s2/lbm " in 5

= 4- 0.00236

The resulting fuel and oxidizer flow rates and la errors in the flow rates due to the above uncertainties

combined with 0.00001 convergence tolerance of the flow rates when solved for using Runge-Kutta
method are

d o -- 0.21857 lbm/s Error_ = 0.00090 lbm/s

&f = 0.13566 lbm/s Error_f = 0.00087 Ibm/s

The uncertainty in MST on time due to the telemetry resolution is

tuncertainty = 4" 0.023 sec

Assuming the nominal GOES-I first two apogee maneuver firings, the total MST on time is 96 minutes

(5,760 sec). Then the fuel and oxidizer masses used (as computed by the bipropellant engine model)
are

dMo = 0.21857 lbm/s • 5760 s = 1258.96 Ibm

dMf 0.13566 lbrn/s • 5760 s = 781.40 Ibm

The errors in the propellant-used computations are:

from errors in flow rates:

ErrordMo,_o ---- 4- 5.18 Ibm

ErrordMf, ar = 4- 5.01 Ibm

from errors in thruster on time:

ErrordMo,t = 0.005 Ibm

r

ErrordMf, t = 0.003 Ibm
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Thus,basedon thetotalpropellantusedduringtheburn,the 30 errorin fuelusedis + 15.03 lbm, the

3a error in oxidizer used is +_15.54 lbm, the relative error in the fuel-used estimation is 1.9 percent,

and the relative error in the oxidizer-used estimate is 1.2 percent.

2. CALIBRATION TECHNIQUES

The models discussed in Part 1 of this document neglect to take advantage of the actual performance

data of the spacecraft during the mission, which can be determined from the actual orbit achieved

after the burn or the status of the orbit during the burn. That is, actual thrust delivered by the engines

can be deduced from the orbital data available thro.ugh tracking. This section presents a method of

calibrating the conceptual propellant system model by using the actual thrust of the GOES-I satellite
as determined from the orbit achieved.

Biprop differential corrector is a FORTRAN program that modifies the parameters of the GOES

Bipropellant engine model (developed using the algorithm described in Part 1; see Reference 2) until

the solution for total thrust obtained by the model matches the observed total thrust produced by the
GOES propulsion system. The correction applied to the parameters is based on the information,

according to SS/Loral, that the engine components most likely to vary during a burn are the propellant

flowresistance coefficients for the MST section of the piping. Since the propellant piping is such that
there are no isolated thrusters, the AOCTs are also affected by the varying MST resistance coefficients.

However, the AOCTs are not affected when the MST is off, because MST off indicates zero propellant

flow to the piping with varying resistance coefficients. Thus, Biprop differential corrector is used only

when the MST is on--that is, during the NASA phase of the mission. In summary, the Biprop differen-

tial corrector is designed to correct for total thrust produced by the MST and the AOCTs combina-
tions by adjusting the propellant (both oxidizer and fuel) flow resistance coefficients of the MST

piping. The single constraint on varying the MST fuel and oxidizer resistance coefficients, given by

SS/Loral, is that the mixture ratio (the ratio of the oxidizer flow rate and the fuel flow rate) for the MST

must equal a predetermined constant. This section discusses (1) calculation of total thrust and average

MST mixture ratio taking into account the AOCT duty cycles; (2) differential corrector requirements;

(3) the differential corrector algorithm; and (4) some examples to illustrate the function and perform-

ance of the Biprop differential corrector program.

2.1 CALCULATION OF TOTAL AVERAGE THRUSTAND AVERAGE MST

MIXTURE RATIO

During a burn, the AOCTs are usually fired for a shorter time period than the MST. The on time of the

AOCTs is described by a duty cycle (percentage of the burn time that the AOCTs are on). The MST

stays on for the entire burn period. The equation for the total thrustis the average of all thrusters that

are firing weighted according to each thruster's on time. As was shown in the study of the effects of
multiple thruster firing on thruster performance (see Reference 3), for the total thrust magnitude cal-

culations it is valid to assume an average duty cycle for all the AOCTs that are on. Likewise, it is valid to

assume that all AOCTs that are on are firing at the same time and at the be'ginning of the burn. There-

fore, the equation for total weighted average thrust is a sum of two parts: one for the MST firing alone

and another for the MST firing together with the AOCTs. Hence,

Tar = TMST(off) " (1 -Duty Cycle/100) + (TMST(on) + Z TAoc)

• (Duty Cycle/100)
(2-1)
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where Tar

TMST(of0

TMST(on)

Duty Cycle

= total weighted average thrust
= MST thrust while AOCTs are off

= MST thrust while AOCTs are on

= total thrust produced by AOCTs

= percent of the burn time that the AOCTs are on

The mixture ratio used in the differential corrector must also be averaged, taking into account the duty
cycles. The mixture ratio in the MST changes when the AOCTs go on, because the flow rates to the
MST are changed. Therefore, the average MST mixture ratio must be calculated in a fashion similar to

average, total thrust calculations. The formula for the weighted average MST mixture ratio is

MRav = MRMST(of0 (1 - Duty Cycle/100) + MRMST(on) " (Duty Cycle/100) (2-2)

where M-Ray = average weighted MST mixture ratio

MRMST(off ) ---- MST mixture ratio while AOCTs are off

MRMST(on ) = MST mixture ratio while AOCTs are on

This average mixture ratio is constrained to equal a predetermined value.

2.2 DIFFERENTIAL CORRECTOR REQUIREMENTS

The differential corrector algorithm has two requirements for the function that describes the system:

1. The function must be continuous over a chosen interval.

2. The function must be differentiable on this interval.

Both of these requirements must be true for total thrust and MST mixture ratio as functions of the

MST flow resistance coefficients. Since the system being modeled is a physical system, the thrust pro-

duced by the system must be directly related to the propellant flow in the system. From the governing
equations of the bipropellant engine model (see Reference 4) we have for any given thruster

Pc = Pf- _ (Kf(i)" (l)f(i)2) (2-3)

Pc = Po- _ (Ko6) " _o(i) 2) (2-4)

where

T = (At"

Pe -- chamber pressure

Pf = fuel pressure

Po --- oxidizer pressure
Kf = fuel resistance coefficient

Ko = oxidizer resistance coefficient

69f = fuel flow rate

&o = oxidizer flow rate

T = thrust

A t = throat area of the thruster

Cf -- thrust coefficient

Cf) " Pc (2-5)
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Therefore, from Equations (2-3) and (2-4), Pc(Kf) and Pc(Ko) are linear functions. Since T is propor-

tional to Pc, T(Kf) and T(Ko) are also linear functions. Thus, taking Kf(MST) and Ko(MST) to be variable
resistances for the MST, the functions that relate these resistances to the total thrust, T(Kf(MST)) and

T(Ko(MST)), are linear by the above argument, and thereby meet the requirements of the differential
corrector algorithm.

Intuitively, there must be a smooth relationship between the flow resistance coefficients and the flow

rates. That is, the flow rate of a propellant in a pipe is smoothly related to the resistance of the pipe's

interior surface. The mixture ratio is simply the oxidizer flow rate divided by the fuel flow rate. Also,
the flow rates are never zero, since the MST is always on when the differential corrector is required.

Therefore, the mixture ratio is a smooth function of the oxidizer and fuel resistance coefficients, and

thus meets the requirements of the differential corrector algorithm.

2.3 DIFFERENTIAL CORRECTOR ALGORITHM

The problem of thrust correction is defined by two variables and two constraints. The two variables are
the fuel resistance coefficient and the oxidizer resistance coefficient. The two constraints are that the

computed thrust must equal the actual thrust and that the computed mixture ratio must equal the

actual mixture ratio. The requirement that mixture ratio be t-Lxed implies that the the actual mixture

ratio is equal to the nominal mixture ratio within a specified tolerance. The following procedure must

be used in performing the differential correction on the bipropellant engine model:

i. Obtain the actual mixture ratio (MRa) using bipropellant engine model with nominal flow

resistance coefficients supplied by the manufacturer.

2. Obtain the actual, total thrust magnitude from the calibrated maneuver mode.

3. Until the computed total thrust (Tn) and the computed mixture ratio (MRn) are within the

specified tolerance of the constraints, iterate with

Kf(MST) (i+ 1) = Kf(MST)(i) + AKf(MST) (2-6)

Ko(MST) (i + 1) = Ko(MSTXi) + AKo(MST) (2-7)

where AKf(MST) and AKo(MST) are obtained via the differential corrector method

AKf(MST) J LbMR/6K°(MST) 6MR/6Kf(MST) MRa - MRn

(2-8)

where 6Ko(MST), 6Kf(MST) ---- perturbation applied to the coefficients

6T, 6MR

Tpert, MRpert

Tn, MRn

= (Tpert - Tn), (MRpert - MRn) respectively

thrust and mixture ratio, respectively, computed by BIPROP

using perturbed coefficients Kf(MST)(i) + 6Kf(MST),

Ko(MST)(i) + 6Ko(MST)

= thrust and mixture ratio, respectively, computed by

BIPROP using unperturbed coefficients

6130-29

497



2.4 EXAMPLES OF BIPROP DIFFERENTIAL CORRECTOR

Table 1 gives some examples of the differential corrector performance. The numbers used for the

actual thrust (Ta) were chosen only for the testing purposes. The nominal resistance coefficients were

part of the data given by the manufacturer for testing the bipropellant engine model software. As

shown in the table, the differential correction makes good progress in only two to three iterations with
relative error for thrust and mixture ratio specified at under 0.5 percent. Note that in Case 2 we find

significantly higher resistance than in Case 1, although the difference between actual and total thrust
in both cases is almost the same. This may be understood as follows:

Let

DTMST = TMST(of0 - TMST(on) (2-9)

so the DTMST is the change in the MST thrust caused by AOCTs firing. Then, substituting DTMST into
Equation (2-1), we get

Tar = TMST(o(0 + (Duty Cycle/100)" (_-_TAoc- DTMsT) (2-10)

Table 1. Differential Corrector Performance

Thrusters

Firing

names

MST only

MSt, 2A

MST, west

face AOCs

NST, ell

AOCS

I_ominal

resistance

coefficients

as supplied by
FACC

Oxidizer Fuel

(Ko(MST))!(Kf(MST))

110.713 190.944

110.713 190.944

110.713 190.944

110.713 190.944

H_atnat

total

thrust

computed
by 81PR0P

(Tn)

108.876

110.748

112.613

116.034

Actual

average
mixture

ratio

computed

by BIPROP

(MR a )

1.611

1.644

1.643

1.642

Actual

total

thrust

from

cat ibrated

nmnuever
mode

(T a)

93.6

95.0

102.0

140.0

Actual

resistance

coefficients

computed by
Differential

Corrector to

obtain actual
thrust

Oxidizer Fuel

(Ko(MST)) (Kf(MST))

176.079 297.618

178.624 303.305

141.416 255.606

53.046 95.709

4

Total
number of

iterations

performed by
DifferntiaL

Corrector to
obtain the

actual thrust

For the examples here, the differential corrector uses the following Inputs:

Specified Relative Error for Ta and MRa: 0.5%
Duty Cycle: 10%
Bum Time: 3,000 sec
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Although DTMST > 0, we observe that (_-_ TAOC - DTMST) > 0. Also, from Equations (2-3), (2-4),

and (2-5), we know that TMST(of0 decreases with increasing resistances. Likewise, from Equa-
tion (2-10), we have

TMST(of0 = Tar- (Duty Cycle/100)" (_-_ TAOC - DTMST) (2-11)

This shows TMST(off) < Tar in Case 2, while TMST(of0 = Tar in Case I. Therefore, we expect Case 2 to
require higher resistances. Moreover, as the resistances increase, the flow rates to the MST decrease;

and, from continuity conditions, the flow rates to AOCTs must increase. Thus,

(Duty Cycle/100) • (_-_ Taoc - DTMST) increases as resistances increase. Similarly,

(Duty Cycle/100) • (_-" Taoc - DTMs-r) increases as the number of the AOCTs firing or the Duty

Cycle increases. That is, the increase in required resistances to obtain the same average thrust be-

comes more marked as the number, or the duty cycle, of the AOCTs firing with the MST increases.

Case 4 shows that the resistance coefficients may also be decreased in order to account for a better

thruster performance than expected.

When such a calibration technique is used, the propellant flow rates and the chamber pressure of each
thruster that was firing during the burn are adjusted in the process to reflect more closely the actual

performance of the thrusters. Using the information of case 1 from Table 1 as an example, if the actual

thruster performance is 86 percent of the predicted performance than the difference in fuel used com-

puted using nominal and calibrated flow resistance coefficients is 107 Ibm. For GOES-I 107 Ibm is

equivalent to 2.5 years of mission lifetime. Therefore, the propellant-remaining calculations derived

by the conceptual model of the system are more realistic, since the model reflects the actual perform-

ance of the propellant system as observed during the mission.
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